Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Тса заочники / ЛекцииТСАDoc.doc
Скачиваний:
1176
Добавлен:
28.03.2015
Размер:
5.56 Mб
Скачать

2. Излучатели ультразвуковых колебаний

В ультразвуковых электрических датчиках наибольшее распространение получили магнитострикционные и пьезоэлектрические излучатели, возбуждаемые с помощью полупроводниковых и электронных генераторов, вырабатывающих переменное напряжение с частотой более 10 кГц. Часто применяется и импульсное возбуждение ультразвуковых излучателей.

Магнитострикционный излучатель стержневого типа (рис. 2, а) представляет собой набор тонких листов из ферромагнитного материала, на который намотана обмотка возбуждения. Чаще всего в магнитострикционных излучателях используется никель и его сплавы (инвар и монель), а также ферриты. Форма пластины показана на рис. 2, б.

Рис. 2. Магнитострикционный излучатель

Рис. 3. Зависимость относительного изменения длины от напряженности магнитного поля

Если стержень из ферромагнитного материала находится в переменном магнитном поле, то он будет попеременно сжиматься и разжиматься, т. е. деформироваться. Зависимость относительного изменения длины стержня из никеля от напряженности магнитного поляH показана на рис. .3. Так как знак деформации не зависит от направления поля, то частота колебании деформации будет в два раза больше частоты переменного возбуждающего поля. Для получения больших механических деформаций используют постоянное подмагничивание стержня, чтобы работать на наиболее крутом участке кривой (рис. 3).

Магнитострикционные излучатели работают в условиях резонанса, когда частота возбуждающего поля совпадает (настроена в резонанс) с частотой собственных упругих колебании стержня, которая определяется по формуле

(2)

где l — длина стержня; Е — модуль упругости; ρ — плотность материала.

Для никелевого стержня длиной l = 100 мм частота собственных колебаний составляет 24,3 кГц, амплитуда достигает примерно 1 мкм. Наивысшая частота, на которой еще удается возбудить достаточно интенсивные колебания, составляет 60 кГц, что соответствует длине 40 мм. Помимо основной частоты в стержне можно возбудить и колебания на высших гармониках (при соответствующем креплении стержня), но с меньшей амплитудой.

В пьезоэлектрическом излучателе ультразвуковых колебаний используется пластина кварца (рис. 4), к которой приложено переменное напряжение Ux, создающее электрическое поле в направлении электрической оси X (см. рис. 1). Продольный обратный пьезоэффект заключается в деформации пластины по оси X.

При этом относительное изменение толщины пластины

(3)

Рис 4. Пьезоэлектрический излучатель ультразвуковых колебаний

Поперечный обратный пьезоэффект заключается в деформации пластины в направлении механической оси Y. При этом относительное изменение длины пластины

(4)

Как видно из (3), продольная деформация не зависит от размеров пластины, а поперечная деформация, как следует из (4), увеличивается с ростом отношения l/а. При напряжениях до 2,5 кВ сохраняется прямая пропорциональность между величиной деформации и напряжением. При больших напряжениях деформация увеличивается не столь быстро и при Ux=25 кВ оказывается на 30 % меньшей, чем рассчитанная по (3) и (4). Амплитуда колебаний достигает максимума при равенстве частоты приложенного напряжения и частоты собственных колебаний пластины.

Частота собственных продольных колебаний определяется по формуле, аналогичной (4), где модуль упругости берется в направлении оси X:

(5)

Частота собственных поперечных колебаний зависит от модуля упругости в направлении оси Y:

(6)

Для кварцевых пластин [кГц] и [кГц], где размеры пластины выражены в сантиметрах.

По сравнению с магнитострикционными пьезоэлектрические излучатели обеспечивают значительно большую (на 1—2 порядка) частоту ультразвуковых колебаний.

Соседние файлы в папке Тса заочники