Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

Chen The electron capture detector

.pdf
Скачиваний:
18
Добавлен:
15.08.2013
Размер:
3.98 Mб
Скачать

REFERENCES 327

and amino acids. With these data it might be possible to realize the importance of electrons to bioenergetics, as proposed by Szent-Gyorgi as early as 1957 [56]. The use of quantum mechanical calculations and any experimental techniques available to study these reactions with biological molecules will be important in the future.

REFERENCES

1.Koshland, D. E. Science, 1992, 258, 1861.

2.Available at http://www.nobel.se/medicine/educational/poster/1998.

3.Chen, E. S. D.; Wentworth, W. E.; and Chen, E. C. M. J. Mol. Struct. 2002, 606, 1.

4.Freeman, R. R. Ph.D. dissertation, University of Houston, 1971.

5.Chen, E. C. M. and Wentworth, W. E. J. Phys. Chem. 1983, 87, 45.

6.Chen, E. S. D. and Chen, E. C. M. J. Phys. Chem. A 2003, 107, 169.

7.Chen, E. C. M. and Chen, E. S. D. J. Phys. Chem. B 2000, 104, 7835.

8.Berthold, H.; Giessner-Prettre, G.; and Pullman, A. Theoret. Chem. Acta 1966, 5, 53.

9.Younkin, J. M.; Smith, L. J.; and Compton, R. N. Theoret. Chem. Acta 1976, 41, 157.

10.Chen, E. S. D.; Chen, E. C. M.; and Wentworth, W. E. Biochem. Biophys. Res. Comm. 1990,171, 97.

11.Wiley, J. R.; Robinson, J. M.; Ehdaie, S.; Chen, E. S. D.; Chen, E. C. M.; and Wentworth,

W.E. Biochem. Biophys. Res. Comm. 1991, 180, 841.

12.Chen, E. S. D.; Chen, E. C. M.; Sane, N.; and Schultz, S. Bioelectrochem. Bioenerget. 1999, 48, 69.

13.Zhang, O. and Chen, E. C. M. Biochem. Biophys. Res. Comm. 1995, 217, 255.

14.Anbar, M. and St. John, G. A. Science 1975, 190, 781.

15.Nenner, I. and Schultz, G. J. J. Chem. Phys. 1975, 62, 1747.

16.Dillow, G. W. and Kebarle, P. Can. J. Chem. 1989, 67, 1628.

17.Seidel, C. A. M.; Schulz, A.; and Sauer, M. H. M. J. Phys. Chem. 1996, 100, 5541.

18.Miller, D. A.; Skogerboe, K.; and Grimsrud, E. P. Anal. Chem. 1981, 53, 464.

19.Keiichi, T. and Elving, P. J. Anal. Chem. 1969, 41, 286.

20.Wiberg, W. B. and Lewis, T. P. J. Amer. Chem. Soc. 1969, 92, 7155.

21.Desfrancois, C.; Aboul-Carmine, H.; and Schermann, J. P. J. Chem. Phys. 1996, 104, 7792.

22.Hendricks, J. H.; Lyapustina, S. A.; De-Clercq, H. L.; Snodgrass, J. T.; and Bowen, K. H.

J.Chem. Phys. 1996, 104, 7788.

23.Hendricks, J. H.; Lyapustina, S. A.; De-Clercq, H. L.; Snodgrass, J. T.; and Bowen, K. H.

J.Chem. Phys. 1998, 108, 8.

24.Scheidt, J.; Weinkauf, R.; Neumark, D. M.; and Schlag, E. W. Chem. Phys. 1998, 239, 511.

25.Sevilla, M. D.; Besler, B.; and Colson, A.-O. J. Phys. Chem. 1995, 99, 1060.

26.Wesolowski, S. S.; Leininger, M. L.; Pentchev, P. N.; and Schaefer, H. F. J. Amer. Chem. Soc. 2001, 123, 4023.

27.Huels, M. A.; Hahndorf, I.; Illenberger, E.; and Sanche, L. J. Chem. Phys. 1998, 108, 1309.

28.Aflatooni, K.; Gallup, G. A.; and Burrow, P. D. J. Phys. Chem. A 1998, 102, 6205.

328 BIOLOGICALLY SIGNIFICANT MOLECULES

29.National Institute of Standards and Technology (NIST). Chemistry WebBook, 2003. Available at http://webbook.nist.gov.

30.Aboul-Carime, H.; Huels, M. A.; Illenberger, E.; and Sanche, L. J. Amer. Chem. Soc. 2001, 123, 5354.

31.Li, X.; Sanche, L.; and Sevilla, M. D. J. Phys. Chem. A 2002, 106, 11248.

32.Rodgers, M. T.; Campbell, S.; Marzluff, R. M.; and Beauchamp, J. L. Int. J. Mass Spectrom. Ion Proc. 1994, 137, 121.

33.Chandra, A. K.; Nguyen, M. T.; Uchimaru, T., and Zeegers-Huyskens, T. J. Phys. Chem. A 1999, 103, 8853.

34.Kurinovich, M. A. and Lee, J. K. J. Amer. Chem. Soc. 2000,122, 6258.

35.Feng, M. J.; Austin, T. J.; Chew, F.; Gronert, S.; and Wu, W. Biochemistry 2000, 39,1778.

36.Huang, Y. and Kenttamaa, H. J. Phys. Chem. A 2003, 107, 4893.

37.Wentworth, W. E.; Chen, E. C. M.; and Steelhammer, J. C. J. Phys. Chem. 1968, 72, 2671.

38.Tsuda, S. and Hamill, W. H. Adv. Mass Spectrom. 1964, 3, 249.

39.Ding, C. F.; Wang, X. B.; and Wang, L. S. J. Phys. Chem. A 1998, 102, 8633.

40.Caldwell, G.; Renneboog, R.; and Kebarle, P. Can. J. Chem. 1989, 67, 661.

41.Locke, M. J. and McIver, R. T. J. Amer. Chem. Soc. 1983, 105, 4226.

42.O’Hair, R. J.; Bowie, J. H.; and Gronert, S. Int. J. Mass Spectrom. Ion Proc. 1992, 117, 23.

43.Landowne, R. A. Chim. Anal.(Paris) 1965, 47, 589.

44.Zumwaldt, R. W.; Kuo, K.; and Gehrk, C. W. J. Chromatogr. 1971, 57, 193.

45.Bengtsson, G., Oldham, G.; and Westerdahl, G. Anal. Biochem. 1981, 111, 163.

46.Robertson, B. H.; Wolcott, M. H.; Bennett, J. C. Proc. Soc. Exp. Biol. Med. 1977, 155, 287.

47.Stadler, J. Anal. Biochem. 1978, 86, 477.

48.Van den Berg, H. W.; Murphy, R. F.; Hunter, R.; and Elmore, D. T. J. Chromatogr. 1978, 145, 311.

49.Chen, E. S. D. and Chen, E. C. M. Bioelectrochem. Bioenerget. 1998, 46, 15.

50.Chen, E. S. D. and Chen, E. C. M.; Wentworth, W. E. Biochem. Biophys. Res. Comm. 2001, 289, 421.

51.Zimm, B. H. and Kallenbach, N. R. Annu. Rev. Phys. Chem. 1962, 13, 176.

52.Richardson, N. A.; Wesolowski, S. S.; and Schaefer, H. F. J. Amer. Chem. Soc. 2002, 124, 10163.

53.Richardson, N. A.; Wesolowski, S. S.; and Schaefer, H. F. J. Phys. Chem. B 2003, 107, 848.

54.Li, X.; Cai, Z.; and Sevilla, M. D. J. Phys. Chem. A 2002, 106, 9345.

55.Steenken, S. Chem. Rev. 1989, 89, 503.

56.Szent-Gyorgi, A. Bioenergetics: New York: Academic Press, 1957.

APPENDICES

Appendix I is a glossary of terms, acronyms, and symbols.

Appendix II presents the structures of organic compounds. Structure 1 provides the number, names, and adiabatic electron affinities of the Bergman Dewar set. Structure 2 gives the adiabatic electron affinities, gas phase acidities, and names of the DNA and RNA bases. Structure 3 shows the charge transfer complex acceptors. Structure 4 gives the numbering system of naphthalene and biphenyl and compares the structures of acenaphthylene and biphenylene.

Appendix III examines the general least-squares procedure. The normal leastsquares solution is compared to the general least-squares solution that allows multiple variables, variable weights in all data, and the use of data determined from other experiments to be combined with that from a specific experiment. The data reduction for a linear plot of ln(KT3=2) versus 1,000/T for acetophenone as a function of reaction time is illustrated. The intercept can be improved by using the weighted average value of the Ea of acetophenone. This is an example of combining data and their uncertainties in the general least-squares solution.

The tables in Appendix IV summarize the evaluated values of the electron affinities given in this book. The electron affinities of the atoms and homonuclear diatomic molecules are given in two tables, A1.1 and A1.2. The references for both tables are combined. The electron affinities of the hydrocarbons are given in Tables A2.1 and A2.2. Tables A2.3 and A2.4 provide the electron affinities of the halogenated hydrocarbons. The odd-numbered tables are ordered by value and the even-numbered tables are ordered by molecular weight. The references for the hydrocarbons are given separately from those of the CHX compounds. Tables A3.1 and A3.2 list the values for the CHNX molecules. These were combined because there are so few halogenated compounds. Tables A4.1 and A4.2 contain the electron affinities of the CHO and CHOX compounds, while Tables A5.1 and A5.2 contain those of the CHON and CHONX compounds.

Searching the NIST tables by combination of elements, for example, CHO, generated Tables A2 through A5. The list contains both radicals and molecules.

The Electron Capture Detector and the Study of Reactions with Thermal Electrons by E. C. M. Chen and E. S. D. Chen

ISBN 0-471-32622-4 # 2004 John Wiley & Sons, Inc.

329

330 APPENDICES

Approximately 170 entries were returned. These were saved in a text file. Less than half of these are for molecules. After eliminating the radicals, the text file was loaded into a spreadsheet, the molecular weights calculated, and the electron affinities in the NIST tables evaluated by taking the weighted average of the values for the same state of a molecule. Values not listed in the NIST table were also included in the weighted average. The revised ECD values were used to adjust the TCT values scaled to the ECD values for benzaldehyde, acetophenone, and benzophenone. For example, the weighted average of the ECD Ea for benzaldehyde is 0.457(5), about 0.03 eV higher than the NIST value. The TCT values scaled to the NIST value have been revised upward by this amount.

In Table A6.1 the names and electron affinities of the Bergman Dewar hydrocarbon set are given. The structures for these compounds are shown in Appendix III along with the electron affinities and Bergman Dewar number. The gas phase electron affinities that are significantly different from the NIST values are tabulated in Table A6.2. This is simply a compilation of the values in the earlier appendices. Table A6.3 lists the gas phase values determined primarily by ECD that are not listed in the NIST tables. Included are some values that could apply to excited states. The excited-state values for cytosine, thymine, and uracil obtained by interpreting hydrated PES spectra are given. Table A6.4 presents the data for hydrated purines. Table A6.5 contains the electron affinities of charge transfer complex acceptors not in the NIST tables. Tables A6.6 and A6.7 list the electron affinities obtained from half-wave reduction potentials also not contained in the NIST tables.

APPENDIX I

Glossary of Terms, Acronyms,

and Symbols

Accuracy

The agreement between the measured quantity and the ‘‘true’’

 

value. The difference is due to systematic uncertainties, as opposed

 

to random uncertainties that define precision.

Ai

Pre-exponential term for rate constants. Subscript 1 stands for

 

attachment, 1 detachment, 2 dissociation, D recombination of

 

electrons, N recombination of anions, ET electron transfer of ions,

 

ET reverse of electron transfer.

AB

General molecule.

AB( )

Anion of AB.

AEa

Adiabatic electron affinity, energy difference between the ground

 

state of the anion and the most stable state of the neutral molecule.

AM1

A particular semi-empirical self-consistent field calculation. It

 

stands for Austin Model-1.

AMB

Alkali metal beam formation of ion pairs.

bExponential constant in the Morse potential function. With m as the reduced mass b ¼ neð2p2m=De½X21=2.

C1

Constant relating the energy for a charge transfer absorption

 

maximum to the electron affinity of the acceptor and the ionization

 

potential of the donor. See equation 2.23.

C2

Second constant relating the energy for a charge transfer absorption

 

maximum to the electron affinity of the acceptor and the ionization

 

potential of the donor. See equation 2.23.

CEC

Abbreviation for CURES-EC in the tables.

CURES-EC

The use of semi-empirical multiconfiguration configuration

 

interaction quantum mechanical procedures to estimate electron

331

332

APPENDIX I

 

 

correlation in the calculation of electron affinities, gas

 

 

phase acidities, ionization potentials, and bond dissociation

 

 

energies.

DEC (1 or 2)

Compounds under dissociative electron capture in the ECD.

 

 

DEC(1) refers to molecules that can dissociate unimolecularly

 

 

via a single potential energy curve. DEC(2) refers to molecules

 

 

that can dissociate via a negative-ion intermediate.

DðmÞ

 

Designation of HIMPEC with m ¼ 0 to 3. This indicates dissocia-

 

 

tion in the Franck Condon region and the number of values of Ea,

 

 

VEa, and EDEA that are positive. This stands in contrast with

 

 

MðmÞ.

DcðmÞ

 

Designation of HIMPEC with m ¼ 0 to 3. This indicates dissocia-

 

 

tion in crossing the long-range curve and the number of values of

 

 

Ea, VEa, and EDEA that are positive. This stands in contrast with

 

 

McðmÞ.

DAB

 

Bond dissociation energy of AB.

DBEa

 

Electron affinity due to the attraction of the permanent dipole

 

 

moment.

De

 

Minimum energy in a potential energy curve.

DeBA

 

Maximum value of A1 calculated from the DeBroglie wavelength

 

 

of the electron. The value of ln(DeBA) is about 36 at 400 K.

eð Þ

 

Electron.

Ei

 

Activation energy for kinetic rate constant. Subscript 1 stands for

 

 

attachment, 1 detachment, 2 dissociation, D recombination of

 

 

electrons, N recombination of anions, ET electron transfer of ions,

E1=2

 

ET reverse of electron transfer.

 

Polarographic half-wave reduction potential measured in aprotic

 

 

solvents.

Ea

 

Electron affinity, energy between the most stable state of an anion

 

 

in an electronic state and the most stable state of the neutra molecule.

Eabs

 

The maximum in the absorption spectra of negative ions.

EB

 

Formation of an anion by the impact of energetic electron beams.

ECD

 

Electron capture detector.

ECT

 

Absorption maximum for charge transfer complexes.

EDEA

 

The electron affinity of dissociating species minus the bond

 

 

dissociation energy.

Eql(a/b)

 

Classification of compounds that form stable negative ions and

 

 

have one or two temperature regions.

Eref

 

Reference potential for a specific reference electrode in polaro-

 

 

graphic reduction potential determinations. The value for the

 

 

saturated calomel electrode is 4.71 V.

 

 

 

 

 

GLOSSARY OF TERMS, ACRONYMS, AND SYMBOLS

333

EnCT

Endothermic charge transfer. Also called energetic ion beam

 

electron transfer.

 

 

 

 

 

 

 

 

 

 

 

 

 

Epd

Photodetachment energy, the energy difference between the anion

 

and the neutral in the geometry of the anion.

 

 

 

 

 

 

 

Err

Rearrangement energy, the Ea VEa.

 

 

 

 

 

 

 

 

 

ES

Electron swarm.

 

 

 

 

 

 

 

 

 

 

 

 

 

ET

Electron transmission, the electron current transmitted through a gas.

EvV

The value selected as the ‘‘best’’ current value. For measurements

 

of the same quantity with different methods, the least-squares best

 

value is the weighted average.

 

 

 

 

 

 

 

 

 

 

GPA

Gas phase acidity, also called the deprotonation energy of a

 

molecule, AH. It is

the energy for

the

reaction AH ¼ HðþÞ ¼

g( )

Að Þ.

 

functions

of (A(

 

)),

(A),

and

e( ); g(e(

 

))

¼

S(e

 

)

 

 

 

 

Partition

 

3=2

/h

3

 

 

 

 

 

 

 

 

 

 

 

(2p me kT)

 

 

. S is the spin

multiplicity of the

electron, the

 

other quantities are the fundamental constants, and T is the

 

temperature.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

HIMPEC

Herschbach ionic Morse potential energy curves. A classification of

 

negative-ion potential energy curves originally proposed by

 

Herschbach and recently modified.

 

 

 

 

 

 

 

 

 

IP

Ionization potential.

 

 

 

 

 

 

 

 

 

 

 

 

 

Ib

Electron concentration in the absence of AB.

 

 

 

 

 

 

 

Ie

Electron concentration in the presence of AB.

 

 

 

 

 

 

 

kA

Dimensionless constant that modifies the attraction of the Morse

 

potential of anions.

 

 

 

 

 

 

 

 

 

 

 

 

 

kB

Dimensionless constant that modifies the exponent of the Morse

 

potential of anions.

 

 

 

 

 

 

 

 

 

 

 

 

 

kR

Dimensionless constant that modifies the repulsion of the Morse

 

potential of anions.

 

 

 

 

 

 

 

¼

 

 

 

 

k1

Rate

constant

 

for

thermal

electron

reaction,

k1

A1T 1=2

 

 

 

 

expð E1=RTÞ.

 

 

 

 

 

 

 

 

k 1 ¼ A 1T

k 1

Rate

constant

 

for

thermal electron detachment,

 

expð E 1=RTÞ.

 

 

 

 

 

 

 

 

 

 

 

 

 

k2

Rate constant for molecular ion dissociation, k2 ¼ A2T expð E2=

 

RTÞ.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

kET

k ET

kD0 kD

Rate constant for electron transfer.

Rate constant for reverse electron transfer.

Rate constant for electron recombination.

Rate constant for electron recombination multiplied by positive-ion concentration.

334

kN0 kN

APPENDIX I

Rate constant for ion recombination.

Rate constant for ion recombination multiplied by positive-ion concentration.

KECD

ECD molar response. Subsequently just K.

Keq

Equilibrium constant for thermal electron reactions, Keq ¼ k1=k 1.

Le

Leaving group in dissociative electron attachment.

LUMO

Lowest unoccupied molecular orbital.

MðmÞ

Designation of HIMPEC with m ¼ 0 to 3. This indicates formation

 

of a molecular ion in the Franck Condon region and the number of

 

values of Ea, VEa, and EDEA that are positive. This contrasts with

 

DðmÞ.

McðmÞ

Designation of HIMPEC with m ¼ 0 to 3. This indicates formation

 

of a molecular ion in crossing the long-range curve and the number

 

of values of Ea, VEa, and EDEA that are positive. This contrasts

 

with DcðmÞ.

MCCI

Multiconfiguration configuration interaction. The modification of

 

the wave functions used to calculate the energies utilizing semi-

 

empirical calculations.

mddG

The solution energy difference for a reaction in polarographic

 

determinations is G and depends on the solvent and specific

 

reaction.

MGN

Magnetron method for measuring electron affinities.

n

Vibrational frequency in a Morse potential energy curve.

NIMS

Negative-ion mass spectrometry.

P

Positive ion.

PEa

Polarization electron affinity. The attraction is due to the polariz-

 

ability of the molecule.

PD

Photodetachment, the removal of an electron from an ion by

 

photons.

PES

Photoelectron spectroscopy, the measurement of the intensity and

 

energy of electrons photodetached from an ion by a fixed-energy

 

photon beam.

Precision

The reproducibility of a measurement. This is determined by

 

random uncertainties, as opposed to systematic uncertainties.

P and A

A graph of two sets of values for the same quantity measured or

 

calculated by two different methods. The deviations from a zero

 

intercept unit slope line will identify systematic (inaccurate) and

 

random (imprecise) uncertainties.

Qan

Ratio of the partition function of the anion to that of the neutral

 

without the spin multiplicity term for the anion.

re, r

Internuclear distance r at the minimum of a potential energy curve.

 

GLOSSARY OF TERMS, ACRONYMS, AND SYMBOLS

335

SCF

Self-consistent field quantum mechanical procedure.

 

Term symbol

The standard term symbol gives a pre-superscript of

2S þ 1,

 

where S is the total spin. The major symbol is the total angular

 

momentum. The post-superscript and subscript are a symmetry

 

term and a spin orbital coupling term. The electronic configuration

 

determines the term symbol.

 

Timeline

A chronological plot of values of a quantity measured with

 

different techniques. The deviations from a constant value can be

 

identified as random or systematic uncertainties to establish accu-

 

racy and precision.

 

URX3O

Acronym for the optimization procedure of CURES-EC UHF, RHF,

 

extremes, three(3), optimization. The UHF, RHF(3300), and

 

RHF(0033) energies are calculated and compared to the experi-

 

mental values. If the experimental value fits between the maximum

 

and minimum values, then the agreement can be optimized.

UðABÞ

Morse potential energy curve for a molecule.

 

UðABð ÞÞ

Morse potential energy curve for the anion of AB.

 

VEa

Vertical electron affinity, energy difference between an anion in the

 

geometry of the neutral molecule and the most stable state of the

 

neutral.

 

Temperature Regions

From low (298 K) to high temperatures (600 K) these regions are as follows:

1.

The b region, where ðKN

ðk 1 þ k2ÞÞ and K ¼ k1=2kD

2.

The a region, where ðk 1

ðkN þ k2ÞÞ and K ¼ ½KN =2kDk1=k 1&

3.

The g region, where ðk2

kN Þ and ðk 1 k2Þ, and K ¼ ½k1k2=2kDk 1&

4.

The d region, where ðk2

ðk 1 þ kN ÞÞ and K ¼ k1=2kD

APPENDIX II

Structures of Organic Molecules

Names, Numbers, and Adiabatic Electron Affinities of

Bergman Dewar Set

Structure 1

336

Соседние файлы в предмете Химия