Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

Garrett R.H., Grisham C.M. - Biochemistry (1999)(2nd ed.)(en)

.pdf
Скачиваний:
182
Добавлен:
15.08.2013
Размер:
24.81 Mб
Скачать

5.7 The Primary Structure of a Protein: Determining the Amino Acid Sequence

141

Step 8. Location of Disulfide Cross-Bridges

Strictly speaking, the disulfide bonds formed between cysteine residues in a protein are not a part of its primary structure. Nevertheless, information about their location can be obtained by procedures used in sequencing, provided the disulfides are not broken prior to cleaving the polypeptide chain. Because these covalent bonds are stable under most conditions used in the cleavage of polypeptides, intact disulfides link the peptide fragments containing their specific cysteinyl residues and thus these linked fragments can be isolated and identified within the protein digest.

An effective way to isolate these fragments is through diagonal electrophoresis (Figure 5.26) (the basic technique of electrophoresis is described in

(a)

(b)

+

Buffer

(c)

(d)

+

(e)

Partial protein digest of sample is smeared along one edge of paper

Migration of peptides toward – electrode

Sample strip is cut from electrophoretogram and treated with performic acid vapors

Performic acid

HCOOOH-treated strip is attached to new sheet of paper and second

electrophoresis run is performed

Peptides derived from disulfide-linked protein fragments

FIGURE 5.26 Disulfide bridges typically are cleaved prior to determining the primary structure of a polypeptide. Consequently, the positions of disulfide links are not obvious from the sequence data. To determine their location, a sample of the polypeptide with intact SOS bonds can be fragmented and the sites of any disulfides can be elucidated from fragments that remain linked. Diagonal electrophoresis is a technique for identifying such fragments. (a) A protein digest in which any disulfide bonds remain intact and link their respective Cys-con- taining peptides is streaked along the edge of a filter paper and (b) subjected to electrophoresis. (c) A strip cut from the edge of the paper is then exposed to performic acid fumes to oxidize any disulfide bridges. (d) Then the paper strip is attached to a new filter paper so that a second electrophoresis can be run in a direction perpendicular to the first. (e) Peptides devoid of disulfides experience no mobility change, and thus their pattern of migration defines a diagonal. Peptides that had disulfides migrate off this diagonal and can be easily identified, isolated, and sequenced to reveal the location of cysteic acid residues formerly involved in disulfide bridges.

Diagonal

142 Chapter 5 Proteins: Their Biological Functions and Primary Structure

the Chapter Appendix). Peptides that were originally linked by disulfides now migrate as distinct species following disulfide cleavage and are obvious by their location off the diagonal (Figure 5.26e). These cysteic acid–containing peptides are then isolated from the paper and sequenced. From this information, the positions of the disulfides in the protein can be stipulated.

Sequence Databases

A database of protein sequences collected by protein chemists can be found in the Atlas of Protein Sequence and Structure. However, most protein sequence information has been derived from translating the nucleotide sequences of genes into codons and, thus, amino acid sequences (see Chapter 13). Sequencing the order of nucleotides in cloned genes is a more rapid, efficient, and informative process than determining the amino acid sequences of proteins. A number of electronic databases containing continuously updated sequence information are readily accessible by personal computer. Prominent among these are PIR (Protein Identification Resource Protein Sequence Database), GenBank (Genetic Sequence Data Bank), and EMBL (European Molecular Biology Laboratory Data Library).

5.8 Nature of Amino Acid Sequences

With a knowledge of the methodology in hand, let’s review the results of amino acid composition and sequence studies on proteins. Table 5.8 lists the relative frequencies of the amino acids in various proteins. It is very unusual for a globular protein to have an amino acid composition that deviates substantially from these values. Apparently, these abundances reflect a distribution of amino acid polarities that is optimal for protein stability in an aqueous milieu. Membrane proteins have relatively more hydrophobic and fewer ionic amino acids, a condition consistent with their location. Fibrous proteins may show compositions that are atypical with respect to these norms, indicating an underlying relationship between the composition and the structure of these proteins.

Proteins have unique amino acid sequences, and it is this uniqueness of sequence that ultimately gives each protein its own particular personality. Because the number of possible amino acid sequences in a protein is astronomically large, the probability that two proteins will, by chance, have similar amino acid sequences is negligible. Consequently, sequence similarities between proteins imply evolutionary relatedness.

Homologous Proteins from Different Organisms

Have Homologous Amino Acid Sequences

Proteins sharing a significant degree of sequence similarity are said to be homologous. Proteins that perform the same function in different organisms are also referred to as homologous. For example, the oxygen transport protein, hemoglobin, serves a similar role and has a similar structure in all vertebrates. The study of the amino acid sequences of homologous proteins from different organisms provides very strong evidence for their evolutionary origin within a common ancestor. Homologous proteins characteristically have polypeptide chains that are nearly identical in length, and their sequences share identity in direct correlation to the relatedness of the species from which they are derived.

Table 5.8

Frequency of Occurrence of Amino Acid Residues in Proteins

 

 

 

Occurrence in

Amino Acid

 

Mr*

Proteins (%)

 

 

 

 

Alanine

Ala A

71.1

9.0

Arginine

Arg R

156.2

4.7

Asparagine

Asn N

114.1

4.4

Aspartic acid

Asp D

115.1

5.5

Cysteine

Cys C

103.1

2.8

Glutamine

Gln Q

128.1

3.9

Glutamic acid

Glu E

129.1

6.2

Glycine

Gly G

57.1

7.5

Histidine

His H

137.2

2.1

Isoleucine

Ile I

113.2

4.6

Leucine

Leu L

113.2

7.5

Lysine

Lys K

128.2

7.0

Methionine

Met M

131.2

1.7

Phenylalanine

Phe F

147.2

3.5

Proline

Pro P

97.1

4.6

Serine

Ser S

87.1

7.1

Threonine

Thr T

101.1

6.0

Tryptophan

Trp W

186.2

1.1

Tyrosine

Tyr Y

163.2

3.5

Valine

Val V

99.1

6.9

*Molecular weight of amino acid minus that of water.

Frequency of occurrence of each amino acid residue in the polypeptide chains of 207 unrelated proteins of known sequence.

Values from Klapper, M. H., 1977. Biochemical and Biophysical Research Communications 78:1018–1024.

5.8 Nature of Amino Acid Sequences

143

1 Gly

6 Gly

10 Phe

Heme

17 Cys

18 His

29Gly

30 Pro

32 Leu

34 Gly

38 Arg

41 Gly

45 Gly

48 Tyr

52 Asn

59 Trp

C y t o c h rome c

The electron transport protein, cytochrome c, found in the mitochondria of all eukaryotic organisms, provides the best-studied example of homology. The polypeptide chain of cytochrome c from most species contains slightly more than 100 amino acids and has a molecular weight of about 12.5 kD. Amino acid sequencing of cytochrome c from more than 40 different species has revealed that there are 28 positions in the polypeptide chain where the same amino acid residues are always found (Figure 5.27). These invariant residues apparently serve roles crucial to the biological function of this protein, and thus substitutions of other amino acids at these positions cannot be tolerated.

FIGURE 5.27 Cytochrome c is a small protein consisting of a single polypeptide chain

of 104 residues in terrestrial vertebrates, 103 or 104 in fishes, 107 in insects, 107 to 109 in

 

fungi and yeasts, and 111 or 112 in green plants. Analysis of the sequence of cytochrome c

 

from more than 40 different species reveals that 28 residues are invariant. These invariant

 

residues are scattered irregularly along the polypeptide chain, except for a cluster between

 

residues 70 and 80. All cytochrome c polypeptide chains have a cysteine residue at position

 

17, and all but one have another Cys at position 14. These Cys residues serve to link the

 

heme prosthetic group of cytochrome c to the protein, a role explaining their invariable

 

presence.

 

68 Leu

70Asn

71Pro

72Lys

73Lys

74 Tyr

76 Pro

78Thr

79 Lys

80 Met

82 Phe

84 Gly

91 Arg

100

FIGURE 5.28

144

Chapter 5 Proteins: Their Biological Functions and Primary Structure

 

 

 

 

 

 

 

 

 

 

 

Chimpanzee

Sheep

Rattlesnake

Carp

Snail

Moth

Yeast

Cauliflower

Parsnip

 

 

 

 

 

 

 

 

 

 

 

 

Human

0

10

14

18

29

31

44

44

43

 

Chimpanzee

 

10

14

18

29

31

44

44

43

 

Sheep

 

 

20

11

24

27

44

46

46

 

Rattlesnake

 

 

 

26

28

33

47

45

43

 

Carp

 

 

 

 

26

26

44

47

46

 

Garden snail

 

 

 

 

 

28

48

51

50

 

Tobacco hornworm moth

 

 

 

 

 

 

44

44

41

 

Baker’s yeast (iso-1)

 

 

 

 

 

 

 

47

47

 

Cauliflower

 

 

 

 

 

 

 

 

13

The number of amino acid differences among the cytochrome c sequences of various organisms can be compared. The numbers bear a direct relationship to the degree of relatedness between the organisms. Each of these species has a cytochrome c of at least 104 residues, so any given pair of species has more than half its residues in common. (Adapted from Creighton, T. E., 1983. Proteins: Structure and Molecular Properties.

San Francisco: W. H. Freeman and Co.)

Furthermore, as shown in Figure 5.28, the number of amino acid differences between two cytochrome c sequences is proportional to the phylogenetic difference between the species from which they are derived. The cytochrome c in humans and in chimpanzees is identical; human and another mammalian (sheep) cytochrome c differ at 10 residues. The human cytochrome c sequence has 14 variant residues from a reptile sequence (rattlesnake), 18 from a fish (carp), 29 from a mollusc (snail), 31 from an insect (moth), and more than 40 from yeast or higher plants (cauliflower).

The Phylogenetic Tree for Cytochrome c

Figure 5.29 displays a phylogenetic tree (a diagram illustrating the evolutionary relationships among a group of organisms) constructed from the sequences of cytochrome c. The tips of the branches are occupied by contemporary species whose sequences have been determined. The tree has been deduced by computer analysis of these sequences to find the minimum number of mutational changes connecting the branches. Other computer methods can be used to infer potential ancestral sequences represented by nodes, or branch points, in the tree. Such analysis ultimately suggests a primordial cytochrome c sequence lying at the base of the tree. Evolutionary trees constructed in this manner, that is, solely on the basis of amino acid differences occurring in the primary sequence of one selected protein, show remarkable agreement with phylogenetic relationships derived from more classic approaches and have given rise to the field of molecular evolution.

FIGURE 5.29 This phylogenetic tree depicts the evolutionary relationships among organisms as determined by the similarity of their cytochrome c amino acid sequences. The numbers along the branches give the amino acid changes between a species and a hypothetical progenitor. Note that extant species are located only at the tips of branches. Below, the sequence of human cytochrome c is compared with an inferred ancestral sequence represented by the base of the tree. Uncertainties are denoted by question marks. (Adapted from Creighton, T. E., 1983. Proteins: Structure and Molecular Properties. San Francisco:

W. H. Freeman and Co.)

5.8 Nature of Amino Acid Sequences

145

Ancestral

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

10

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

20

 

 

 

 

 

 

 

 

 

 

 

cytochrome c

 

Pro

 

Ala

 

Gly

 

 

 

Asp

 

 

?

 

Lys

 

Lys

 

Gly

 

Ala

 

Lys

 

 

Ile

 

 

Phe

 

Lys

 

Thr

 

?

 

Cys

 

Ala

 

Gln

 

 

 

 

Cys

 

His

 

 

 

Thr

 

 

Val

 

Glu

 

?

 

Gly

 

Gly

 

?

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Human

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Val

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Gly

 

 

 

Asp

 

 

 

Glu

 

Lys

 

Gly

 

Lys

 

Lys

 

 

Ile

 

 

Phe

 

Ile

 

Met

 

Lys

 

Cys

 

Ser

 

Gln

 

 

 

 

Cys

 

His

 

 

 

Thr

 

 

Val

 

Glu

 

Lys

 

Gly

 

Gly

 

Lys

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

cytochrome c

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

30

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

40

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

50

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

His

 

 

 

Lys

 

 

Val

 

Gly

 

Pro

 

Asn

 

Leu

 

His

 

 

Gly

 

 

Leu

 

Phe

 

Gly

 

Arg

 

Lys

 

?

 

Gly

 

 

 

 

Gln

 

Ala

 

 

 

?

 

 

Gly

 

Tyr

 

Ser

 

Tyr

 

Thr

 

Asp

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

His

 

 

 

Lys

 

Thr

 

Gly

 

Pro

 

Asn

 

Leu

 

His

 

 

Gly

 

 

Leu

 

Phe

 

Gly

 

Arg

 

Lys

 

Thr

 

Gly

 

 

 

 

Gln

 

Ala

 

 

 

Pro

 

 

Gly

 

Tyr

 

Ser

 

Tyr

 

Thr

 

Ala

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

60

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

70

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Ala

 

 

 

Asn

 

 

Lys

 

Asn

 

Lys

 

Gly

 

?

 

?

 

 

 

Trp

 

 

?

 

 

Glu

 

Asn

 

Thr

 

Leu

 

Phe

 

Glu

 

 

 

 

Tyr

 

Leu

 

 

Glu

 

 

Asn

 

Pro

 

Lys

 

Lys

 

Tyr

 

Ile

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Ala

 

 

 

Asn

 

 

Lys

 

Asn

 

Lys

 

Gly

 

Ile

 

Ile

 

 

 

Trp

 

 

 

Gly

 

Glu

 

Asp

 

Thr

 

Leu

 

Met

 

Gln

 

 

 

 

Tyr

 

Leu

 

 

Glu

 

 

Asn

 

Pro

 

Lys

 

Lys

 

Tyr

 

Pro

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

80

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

90

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

100

 

 

 

 

 

 

 

 

Pro

 

 

 

Gly

 

Thr

 

Lys

 

Met

 

?

 

 

Phe

 

?

 

 

 

Gly

 

 

Leu

 

Lys

 

Lys

 

?

 

?

 

Asp

 

Arg

 

 

 

Ala

 

Asp

 

 

Leu

 

 

Ile

 

Ala

 

Tyr

 

Leu

 

Lys

 

?

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Pro

 

 

 

Gly

 

Thr

 

Lys

 

Met

 

Ile

 

Phe

 

Val

 

 

Gly

 

 

 

Ile

 

 

Lys

 

Lys

 

Lys

 

Glu

 

Glu

 

Arg

 

 

 

Ala

 

Asp

 

 

Leu

 

 

Ile

 

Ala

 

Tyr

 

Leu

 

Lys

 

Lys

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Ala

 

 

 

Thr

 

 

 

Ala

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Ala

 

 

 

Thr

 

 

 

Asn

 

Glu

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

146 Chapter 5 Proteins: Their Biological Functions and Primary Structure

Related Proteins Share a Common Evolutionary Origin

Amino acid sequence analysis reveals that proteins with related functions often show a high degree of sequence similarity. Such findings suggest a common ancestry for these proteins.

Oxygen-Binding Heme Proteins

The oxygen-binding heme protein of muscle, myoglobin, consists of a single polypeptide chain of 153 residues. Hemoglobin, the oxygen transport protein of erythrocytes, is a tetramer composed of two -chains (141 residues each) and two -chains (146 residues each). These globin polypeptides—myoglobin,-globin, and -globin—share a strong degree of sequence homology (Figure 5.30). Human myoglobin and the human -globin chain show 38 amino acid

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

10

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

20

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Myoglobin

Gly

 

 

 

 

 

 

Leu

 

 

Ser

 

Asp

 

Gly

 

Glu

 

Trp

 

Gln

 

 

Leu

 

Val

Leu

 

Asn

 

Val

 

 

Trp

 

Gly

 

 

Lys

 

Val

 

Glu

 

Ala

 

Asp

 

 

Ile

 

Pro

Gly

 

His

 

 

Gly

 

Gln

 

Glu

 

 

Val

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

α

 

 

 

 

 

 

 

 

 

Ser

 

 

 

Ala

 

Asp

 

 

 

 

 

Thr

 

Asn

 

 

Lys

 

 

 

 

 

Ala

 

 

 

 

 

 

 

 

 

 

 

 

 

Gly

 

Ala

 

His

 

Ala

 

Gly

Gln

 

Tyr

 

 

 

 

 

Ala

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Val

 

 

 

 

 

 

Leu

 

Pro

 

Lys

 

Val

Ala

 

Trp

 

Gly

 

 

Lys

 

Val

 

 

 

 

Gly

Glu

 

 

Ala

 

 

 

 

 

 

 

β

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Val

 

 

His

 

Leu

 

 

Thr

 

Pro

 

Glu

 

Glu

 

Lys

 

 

 

Ser

 

Ala

 

Val

Thr

 

 

Ala

 

 

 

Leu

 

 

Trp

 

Gly

 

 

Lys

 

Val

 

Asn

 

 

 

 

 

 

 

 

 

Val

 

Asp

Glu

 

Val

 

 

Gly

 

Gly

 

Glu

 

 

Ala

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

30

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

40

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

50

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

60

 

 

 

Leu

 

 

Ile

 

 

 

Arg

 

Leu

 

Phe

 

 

Lys

 

Gly

 

His

 

Pro

 

Glu

 

 

 

Thr

 

Leu

 

Glu

 

Lys

 

 

Phe

 

 

Asp

 

Lys

 

Phe

 

 

Lys

 

His

 

Leu

 

Lys

 

Ser

 

 

Glu

 

Asp

Glu

 

Met

 

Lys

 

Ala

 

Ser

 

 

 

 

Glu

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Leu

 

 

Glu

 

 

Arg

 

Met

 

Phe

 

Leu

Ser

 

Phe

Pro

 

Thr

 

 

Thr

 

 

Lys

 

Thr

 

Tyr

 

Phe

 

Pro

 

His

 

Phe

 

 

 

 

 

 

Asp

 

Leu

 

Ser

 

 

His

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Gly

 

 

Ser

 

 

 

 

Ala

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Leu

 

 

Gly

 

 

 

Arg

 

Leu

 

Leu

 

 

Val

 

Val

 

Tyr

 

Pro

 

Trp

 

 

 

Thr

 

Gln

 

Arg

 

Phe

 

 

Phe

 

 

Glu

 

Ser

 

Phe

 

 

Gly

 

Asp

 

Leu

 

Ser

 

 

Thr

 

 

Pro

 

Asp

Ala

 

Val

 

Met

 

Gly

 

 

Asn

 

 

 

 

Pro

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

70

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

80

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

90

 

 

 

 

 

 

 

 

 

 

 

Asp

 

 

Leu

 

 

 

 

 

Lys

 

 

 

 

 

 

Ala

 

Thr

 

 

 

Leu

 

 

 

Thr

 

 

 

 

 

 

Gly

 

 

Gly

 

 

Ile

 

 

Leu

 

Lys

 

 

Lys

 

Lys

 

Gly

 

His

 

His

 

 

Glu

Ala

Glu

 

Ile

 

 

 

Lys

 

Pro

 

 

 

 

 

 

 

 

Ala

 

 

 

 

 

 

Lys

 

 

 

His

 

Gly

 

 

 

Val

 

 

 

 

Ala

 

Leu

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Leu

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Gln

 

 

Val

 

Lys

 

 

Gly

 

His

 

Gly

 

Lys

 

Lys

 

Val

 

Ala

 

 

Asp

 

Ala

 

Leu

 

Thr

 

Asn

 

Ala

 

Val

 

Ala

 

 

His

 

Val

 

Asp

 

Asp

 

Met

 

Pro

Asn

Ala

 

Leu

 

 

Ser

 

Ala

 

Leu

 

 

 

 

Ser

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Lys

 

 

Val

 

Lys

 

 

Ala

 

His

 

Gly

 

Lys

 

Lys

 

Val

 

Leu

 

 

Gly

 

Ala

 

Phe

 

Ser

 

Asp

 

Gly

 

Leu

 

Ala

 

 

His

 

Leu

 

Asp

 

Asn

 

Leu

 

Lys

Gly

Thr

 

Phe

 

 

Ala

 

Thr

 

Leu

 

 

Ser

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

100

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

110

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

120

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Gln

 

 

Ser

 

His

 

 

Ala

 

Thr

 

 

Lys

 

His

 

Lys

 

Ile

 

Pro

 

 

 

Val

 

Lys

 

Tyr

 

Leu

 

 

Glu

 

 

Phe

 

 

Ile

 

Ser

 

 

Glu

 

Cys

 

Ile

 

Ile

 

Gln

 

 

Val

Leu

Gln

 

Ser

 

 

 

Lys

 

His

 

Pro

 

 

 

Gly

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Asp

 

 

 

 

 

 

 

 

 

 

 

Ala

 

His

 

 

 

 

 

Arg

 

 

 

 

 

 

 

 

 

 

Val

 

 

 

 

 

 

 

Lys

 

 

 

 

 

 

 

Ser

 

 

His

 

Cys

 

 

 

Leu

 

His

 

 

Thr

 

 

 

 

 

Ala

 

 

 

 

 

 

Leu

 

Pro

 

 

 

 

Ala

 

 

 

 

 

Leu

 

His

 

 

 

 

 

Lys

 

Leu

 

 

Val

 

Asp

 

 

Pro

 

 

Asn

 

Phe

 

 

 

Leu

 

Leu

 

 

 

 

 

Leu

 

 

 

Leu

Ala

 

 

 

His

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Glu

 

 

Leu

 

His

 

 

Cys

 

Asp

 

 

Lys

 

Leu

 

His

 

Val

 

Asp

 

 

 

Pro

 

Glu

 

Asn

 

Phe

 

 

Arg

 

 

Leu

 

 

Leu

 

Gly

 

 

Asn

 

Val

 

Leu

 

Val

 

Asn

 

 

Val

Leu

Ala

 

His

 

 

 

His

 

Phe

 

Gly

 

 

Lys

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

130

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

140

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

150

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Asp

 

 

Phe

 

Gly

 

 

Ala

 

Asp

 

 

Ala

 

Gln

 

Gly

 

Ala

 

Met

 

 

 

Asn

 

Lys

 

Ala

 

Leu

 

 

Glu

 

 

Leu

 

 

Phe

 

Arg

 

 

Lys

 

Asp

 

Met

 

Ala

 

Ser

 

 

Asn

Tyr

Lys

 

Glu

 

 

 

Leu

 

Gly

 

Phe

 

Gln

 

Gly

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Ala

 

 

 

 

His

 

 

 

Ser

 

Leu

 

 

Asp

 

 

 

 

Phe

 

Leu

 

 

 

 

 

 

Ser

 

 

 

 

Ser

 

 

Thr

 

Val

 

 

 

Thr

 

Ser

 

 

 

 

 

 

 

Arg

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Glu

 

 

Phe

 

Thr

 

Pro

 

Val

Ala

Lys

Ala

Val

Leu

Lys

Tyr

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Glu

 

 

Phe

 

Thr

 

 

Pro

 

Pro

 

 

Val

 

Gln

 

Ala

 

Ala

 

Tyr

 

 

 

Gln

 

Lys

 

Val

 

Val

 

 

Ala

 

 

 

 

Gly

 

 

Val

 

 

Ala

 

 

Asn

 

Ala

 

Leu

 

Ala

 

His

 

 

Lys

Tyr

His

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

α –chain of horse methemoglobin

β –chain of horse methemoglobin

Sperm whale myoglobin

FIGURE 5.30 Inspection of the amino acid sequences of the globin chains of human hemoglobin and myoglobin reveals a strong degree of homology. The -globin and

-globin chains share 64 residues of their approximately 140 residues in common. Myoglobin and the -globin chain have 38 amino acid sequence identities. This homology is further reflected in these proteins’ tertiary structure. (Irving Geis)

identities, whereas human -globin and human -globin have 64 residues in common. The relatedness suggests an evolutionary sequence of events in which chance mutations led to amino acid substitutions and divergence in primary structure. The ancestral myoglobin gene diverged first, after duplication of a primordial globin gene had given rise to its progenitor and an ancestral hemoglobin gene (Figure 5.31). Subsequently, the ancestral hemoglobin gene duplicated to generate the progenitors of the present-day -globin and -globin genes. The ability to bind O2 via a heme prosthetic group is retained by all three of these polypeptides.

Serine Pro t e a s e s

Whereas the globins provide an example of gene duplication giving rise to a set of proteins in which the biological function has been highly conserved, other sets of proteins united by strong sequence homology show more divergent biological functions. Trypsin, chymotrypsin (see Section 5.7), and elastase are members of a class of proteolytic enzymes called serine proteases because of the central role played by specific serine residues in their catalytic activity. Thrombin, an essential enzyme in blood clotting, is also a serine protease. These enzymes show sufficient sequence homology to conclude that they arose via duplication of a progenitor serine protease gene, even though their substrate preferences are now quite different.

Apparently Different Proteins May Share a Common Ancestry

A more remarkable example of evolutionary relatedness is inferred from sequence homology between hen egg white lysozyme and human milk - lactalbumin, proteins of quite different biological activity and origin. Lysozyme (129 residues) and -lactalbumin (123 residues) are identical at 48 positions. Lysozyme hydrolyzes the polysaccharide wall of bacterial cells, whereas - lactalbumin regulates milk sugar (lactose) synthesis in the mammary gland. Although both proteins act in reactions involving carbohydrates, their functions show little similarity otherwise. Nevertheless, their tertiary structures are strikingly similar (Figure 5.32). It is conceivable that many proteins are related in this way, but time and the course of evolutionary change erased most evidence of their common ancestry. In an interesting contrast to this case, the proteins actin and hexokinase share essentially no sequence homology, yet they have very similar three-dimensional structures, even though their biological roles and physical properties are quite different. Actin forms a filamentous polymer that is a principal component of the contractile apparatus in muscle; hexokinase is a cytosolic enzyme that catalyzes the first reaction in glucose catabolism.

Mutant Proteins

Given a large population of individuals, a considerable number of sequence variants can be found for a protein. These variants are a consequence of mutations in a gene (base substitutions in DNA) that have arisen naturally within the population. Gene mutations lead to mutant forms of the protein in which the amino acid sequence is altered at one or more positions. Many of these mutant forms are “neutral” in that the functional properties of the protein are unaffected by the amino acid substitution. Others may be nonfunctional (if loss of function is not lethal to the individual), and still others may display a range of aberrations between these two extremes. The severity of the effects on function depends on the nature of the amino acid substitution and its role in the protein. These conclusions are exemplified by the more than 300 human

5.8 Nature of Amino Acid Sequences

147

Myoglobin

β

α

Ancestral

Ancestral

β -globin

α -globin

Ancestral hemoglobin

Ancestral globin

FIGURE 5.31 This evolutionary tree is inferred from the homology between the amino acid sequences of the -globin, -glo- bin, and myoglobin chains. Duplication of an ancestral globin gene allowed the divergence of the myoglobin and ancestral hemoglobin genes. Another gene duplication event subsequently gave rise to ancestral and forms, as indicated. Gene duplication is an important evolutionary force in creating diversity.

148 Chapter 5 Proteins: Their Biological Functions and Primary Structure

N

N

C

129

C

123

 

Human milk -lactalbumin

Hen egg white lysozyme

FIGURE 5.32 The tertiary structures of hen egg white lysozyme and human -lactal- bumin are very similar. (Adapted from Acharya, K. R., et al., 1990. Journal of Protein Chemistry 9:549–563; and Acharya, K. R., et al., 1991. Journal of Molecular Biology 221:571–581.

-Lactalbumin

Lysozyme

Table 5.9

Some Pathological Sequence Variants of Human Hemoglobin

Abnormal Hemoglobin*

Normal Residue and Position

Substitution

 

 

 

Alpha chain

 

 

Torino

Phenylalanine 43

Valine

MBoston

Histidine 58

Tyrosine

Chesapeake

Arginine 92

Leucine

GGeorgia

Proline 95

Leucine

Tarrant

Aspartate 126

Asparagine

Suresnes

Arginine 141

Histidine

Beta chain

 

 

S

Glutamate 6

Valine

Riverdale–Bronx

Glycine 24

Arginine

Genova

Leucine 28

Proline

Zurich

Histidine 63

Arginine

MMilwaukee

Valine 67

Glutamate

MHyde Park

Histidine 92

Tyrosine

Yoshizuka

Asparagine 108

Aspartate

Hiroshima

Histidine 146

Aspartate

*Hemoglobin variants are often given the geographical name of their origin.

Adapted from Dickerson, R. E., and Geis, I., 1983. Hemoglobin: Structure, Function, Evolution and Pathology.

Menlo Park, CA: Benjamin-Cummings Publishing Co.

5.9 Synthesis of Polypeptides in the Laboratory

149

hemoglobin variants that have been discovered to date. Some of these are listed in Table 5.9.

A variety of effects on the hemoglobin molecule are seen in these mutants, including alterations in oxygen affinity, heme affinity, stability, solubility, and subunit interactions between the -globin and -globin polypeptide chains. Some variants show no apparent changes, whereas others, such as HbS, sicklecell hemoglobin (see Chapter 15), result in serious illness. This diversity of response indicates that some amino acid changes are relatively unimportant, whereas others drastically alter one or more functions of a protein.

5.9 Synthesis of Polypeptides in the Laboratory

Chemical synthesis of peptides and polypeptides of defined sequence can be carried out in the laboratory. Formation of peptide bonds linking amino acids together is not a chemically complex process, but making a specific peptide can be challenging because various functional groups present on side chains of amino acids may also react under the conditions used to form peptide bonds. Furthermore, if correct sequences are to be synthesized, the -COOH group of residue x must be linked to the -NH2 group of neighboring residue y in a way that prevents reaction of the amino group of x with the carboxyl group of y. Ingenious synthetic strategies are required to circumvent these technical problems. In essence, any functional groups to be excluded from reaction must be blocked while the desired coupling reactions proceed. Also, the blocking groups must be removable later under conditions in which the newly formed peptide bonds are stable. These limitations mean that addition of each amino acid requires several steps. Further, all reactions must proceed with high yield if peptide recoveries are to be acceptable. Peptide formation between amino and carboxyl groups is not spontaneous under normal conditions (see Chapter 4), so one or the other of these groups must be activated to facilitate the reaction. Despite these difficulties, biologically active peptides and polypeptides have been recreated by synthetic organic chemistry. Milestones include the pioneering synthesis of the nonapeptide posterior pituitary hormones oxytocin and vasopressin by du Vigneaud in 1953, and in later years, the blood pres- sure–regulating hormone bradykinin (9 residues), melanocyte-stimulating hormone (24 residues), adrenocorticotropin (39 residues), insulin (21 A-chain and 30 B-chain residues), and ribonuclease A (124 residues).

Solid Phase Peptide Synthesis

Bruce Merrifield and his collaborators found a clever solution to the problem of recovering intermediate products in the course of a synthesis. The carboxylterminal residues of synthesized peptide chains were covalently anchored to an insoluble resin particle large enough to be removed from reaction mixtures simply by filtration. After each new residue was added successively at the free amino-terminus, the elongated product was recovered by filtration and readied for the next synthetic step. Because the growing peptide chain was coupled to an insoluble resin bead, the method is called solid phase synthesis. The procedure is detailed in Figure 5.33. This cyclic process has been automated and computer controlled so that the reactions take place in a small cup with reagents being pumped in and removed as programmed. The 124-residue-long bovine pancreatic ribonuclease A sequence was synthesized, and the final product was enzymatically active as an RNase.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Aminoacyl-

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

resin particle

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

R1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

H2N

 

CHC

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

N

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

N

 

 

 

 

 

 

 

 

 

 

 

 

O

 

 

 

 

 

 

 

 

 

CH3

 

 

 

 

 

 

 

R2

 

 

 

 

 

 

 

 

 

 

 

CH3

 

 

 

 

 

R2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CH3

 

C

 

O

 

 

C

 

 

 

NHCHCOOH +

 

C

 

 

 

 

 

 

 

CH3

 

C

 

O

 

C

 

 

NHCHC

 

O

C

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

NH

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

N

 

 

 

 

 

 

 

 

 

CH3

 

 

O

 

 

 

 

 

 

 

 

 

NH

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CH3

 

O

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

O

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Blocking group

 

 

 

 

 

 

Incoming

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

C

 

O

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

blocked

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

NH

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

amino acid

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Dicyclohexyl-

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Activated

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

carbodiimide

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

amino acid

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Dicyclohexylurea

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CH3

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CH3

 

 

 

 

 

 

R2

 

R1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CH3

 

 

C

 

 

O

 

C

 

Cl

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Amino-blocked

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

dipeptidyl-

CH3

 

C

 

O

 

C

 

 

NHCHCNHCHC

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CH3

O

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

resin particle

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

BocCl

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CH3

 

O

 

 

 

 

 

O

 

 

 

O

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CH2

 

 

N

 

 

 

 

 

 

R

 

O

 

 

 

 

R O

 

N

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Acid

 

 

 

 

 

 

 

 

 

 

C

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

H3C

CH3

 

 

 

 

 

 

+ H2N

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

C

 

C

 

C

 

OH

 

 

H2N

 

C

 

C

 

O C

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Isobutylene

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

N

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

NH

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

H

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

H

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CO2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

R2

 

R1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Dipeptide-resin

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Dicyclohexyl-

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Activated

 

 

 

 

 

 

 

 

 

 

H2NCHCNHCHC

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

particle

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

carbodiimide

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

amino acid

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

O

 

 

 

O

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CH3

 

 

 

 

 

 

R3

N

 

 

 

CH3

 

 

 

 

 

 

R3

 

 

 

 

 

 

N

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CH3

 

C

 

O

 

C

 

 

 

NHCHCOOH +

C

 

 

 

CH3

 

C

 

O

 

C

 

 

NHCHC

 

 

 

O

 

C

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

NH

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CH3

 

 

O

 

 

 

 

 

 

 

 

 

 

CH3

 

O

 

 

 

 

O

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

N

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

NH

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Incoming blocked

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

C

 

O

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

amino acid

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

NH

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

FIGURE 5.33

Solid phase synthesis of a peptide. (inset)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Activated

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

amino acid

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Tertiary butyloxycarbonyl chloride (tBocCl) is an excellent

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

reagent for blocking amino groups of amino acids during

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CH3

 

 

 

 

 

 

 

 

R3

R2

R1

 

organic synthesis. Dicyclohexylcarbodiimide (DCCD) is a pow-

Amino-blocked

 

 

 

 

 

 

 

 

 

 

 

 

 

 

erful agent for activating carboxyl groups to condense with

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CH3

 

 

 

C

 

 

O

 

 

C

 

 

 

NHCHC NHCHCNHCHC

 

 

 

 

 

 

amino groups to form peptide bonds. The carboxyl group of

tripeptidyl-

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

resin particle

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

the first amino acid (the carboxyl-terminal amino acid of the

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CH3

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

O

 

 

 

O

 

O

 

O

 

peptide to be synthesized) is attached to an insoluble resin

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

particle (the aminoacyl-resin particle). The next amino acid,

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

with its amino group blocked by a tBoc group and its carboxyl

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Acid

 

 

 

 

 

 

+

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Isobutylene

 

CO2

group activated with DCCD, is reacted with the aminoacyl-

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

resin particle to form a peptide linkage, with elimination of

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

DCCD as dicyclohexylurea. Acid treatment removes the N-ter-

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

R3

R2

R1

 

minal tBoc blocking group as the gaseous products CO2 and

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Tripeptidyl-resin

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

isobutylene, exposing the N-terminus of the dipeptide for

 

 

 

 

 

 

 

 

 

 

 

 

H2NCHC

 

NHCHC

 

NHCHC

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

particle

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

another cycle of amino acid addition. The growing peptide

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

chain is easily recovered after cyclic additions of amino acids

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

O

 

O

 

O

 

simply by filtering or centrifuging the reaction mixture.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

150

Соседние файлы в предмете Химия