Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
нормальная физиология.docx
Скачиваний:
1114
Добавлен:
19.02.2016
Размер:
1.7 Mб
Скачать

10.7. Регуляция дыхания

Регуляцией дыханияназывают процесс управления венти­ляцией легких, направленный на поддержание дыхательных констант внутренней среды организма и приспособление дыха­ния к изменяющимся условиям внешней и внутренней среды.

Функциональная система регуляции дыхания.Механиз­мы регуляции дыхания объединяются в функциональную сис­тему, деятельность которой направлена на поддержание дыха­тельных констант внутренней среды организма (ее упрощен­ная схема представлена на рис. 10.7). Этими константами (го- меостатическими показателями) являются напряжение кислорода, напряжение углекислого газа и показатель рН кро-Вии ликвора. Таким образом, система регулирует сразу три показателя. Такие системы относят к весьма сложным. Рас-сМотрим сначала общую структуру и свойства системы. За ве­тчиной регулируемых параметров следят хеморецепторы.

Поведенческие реакции

Рис. 10.7 Схема функциональной системы, регулирующей оптимальный уровень дыхательных констант внутренней среды организма: 1 — 3 — импульсация от экстеро-, интеро- и проприорецепторов

Импульсы от них идут по каналу обратной связи в центральную нервную систему, прежде всего в дыхательный центр. Этот центр может воспринимать непосредственное воздействие га­зов, переносимых с кровью. К дыхательному центру приходят также импульсы от рецепторов, контролирующих растяжение легких исостояние дыхательных мышц. Таким образом по не­скольким каналам обратной связи жизненно важный отделды­хательного центра получает информацию как о величине регу­лируемых показателей, так и о состоянии исполнительных ме­ханизмов, обеспечивающих газообмен. На основе анализа поступающей информации и связей сдругими отделами цент­ральной нервной системы формируется комплекс импульсов, передающихся к дыхательным мышцам и многим внутренним органам, которые выполняют роль эффекторов (исполнитель­ных звеньев) впроцессах регуляции оптимального уровня Дь1' хательных констант внутренней среды организма. Средиэф' фекторных структур и механизмов функциональной систем^' регуляции дыхательных констант выделяют: работу дыхатель-ных мышц, обеспечивающих внешнее дыхание, работу сердца, изменение тонуса сосудов, объема циркулирующей крови, ко­личестваэритроцитов и содержания в них гемоглобина, изме­нение выделения кислых или щелочных продуктов почками и желудочно-кишечным трактом, изменение интенсивности и характера метаболизма в тканях.

Таким образом, рассматриваемая функциональная система имеет замкнутый контур регулирования, со многими (не менее четырех) контурами обратной связи и является системой взаи­мосвязанного регулирования трех показателей. Регуляция в ней ведется по отклонению и по возмущению, система способ­на к самообучению. Регуляцию по отклонению можно просле­дить по результатам, полученным исследователями в экспери­ментах на животных: при введении кислот в кровь или ликвор наблюдается гипервентиляция, организм стремится компен­сировать подкисление крови за счет усиления выведения угле­кислого газа через легкие. Регуляция по возмущению ярко видна по резкому увеличению интенсивности внешнего дыха­ния в первые же секунды начала выполнения мышечной рабо­ты. В это время еще нет изменения уровня р02, рС02и рН крови и ликвора, а вентиляция легких резко увеличивается. Организм оценивает приток импульсаций от скелетных мышц как сигнал о возмущающем воздействии, предвещающем сдвиг дыхательных констант, и изменяет работу эффекторных структур так, чтобы предотвратить этот сдвиг. О наличии са­мообучения системы регуляции дыхания свидетельствует воз­можность выработки условных рефлексов, изменяющих ин­тенсивность вентиляции, и ряд других специальных опытов (например, опыты с повторным дыханием через противогаз, когда при повторных подключениях этого устройства дыха­тельный центр все более точно изменяет объем вдоха и выдоха Мя компенсации подсоединяемого дополнительного мертвого пространства).

В рассматриваемой нами функциональной системе имеют­ся многие блоки, в нее входит ряд рефлекторных реакций и гу- Моральных механизмов регуляции функций. Рассмотрим важ­нейшие из этих составляющих.

Дыхательный центр. Дыхательным центромназывают совокупность нейронных структур, расположенных в различ-НЬ|х отделах центральной нервной системы, регулирующих ритмические координированные сокращения дыхательных мышц и приспособление дыхания к изменяющимся условиям среды и потребностям организма. Среди этих структур выде­ляют жизненно важные отделы дыхательного центра, без которых дыхательные движения прекращаются. К ним отно­сятся отделы, расположенные в продолговатом и спинном мозге. В спинном мозге в структуру дыхательного центра вхо­дят мотонейроны диафрагмального нерва (3—5-й шейные сег­менты) и мотонейроны межреберных нервов (2— 12-й грудные сегменты).

Особое значение имеет отдел дыхательного центра в про­долговатом мозге. Он расположен в области дна 4-го желудоч­ка и представляет собой парное образование, имеющее инспи- раторный (посылает импульсы к мышцам вдоха) и экспиратор­ный (обеспечивает выдох) отделы. В каждом из этих отделов находятся группы нейронов, взаимодействие которых обеспе­чивает формирование частоты и глубины дыхательных движе­ний. В инспираторном отделе имеются нейроны, обладающие автоматией.

Важную роль в определении характера дыхательных дви­жений играют импульсы, приходящие по афферентным волок­нам от рецепторов, а также от коры большого мозга, лимби­ческой системы и особенно гипоталамуса. Схема нервных свя­зей дыхательного центра представлена на рис. 10.8. Рассмот­рим циркуляцию импульсаций в этой системе на протяжении одного дыхательного цикла.

Вначале благодаря автоматии инспираторных нейронов и под влиянием приходящей к ним импульсации от рецепторов, чувствительных к р02, рС02и рН, а также от других интеро-иэкстерорецепторов возбуждаются нейроны инспираторного отдела продолговатого мозга. Импульсы от них идут по нисхо­дящим путям и переключаются на мотонейроны спинного моз­га, формирующие диафрагмальные имежреберные нервы. По этим нервам импульсы приходят к мышцам, обеспечивающим расширение грудной клетки, вслед закоторой расширяются легкие и происходит вдох. При вдохе активируются рецепторы растяжения дыхательных путей и легких. Импульсация от ре­цепторов растяжения идет по афферентным волокнам в стволе блуждающего нерва в продолговатый мозг и активирует экс­пираторные нейроны. Так замыкается один контур механизма регуляции дыхания. Второй регуляторный контур также начи-

Рис. 10.8. Схема нервных связей дыхательного центра: Ио — инспираторный отдел дыхательного центра продолговатого мозга; Эо — экс­пираторный отдел, ПТо — пневмотаксический отдел моста; / — диафрагмальный нерв; 2- межреберные нервы; 3- рецепторы дуги аорты: 4 -рецепторы каро­тидного тельца; 5,7 —пути передачи импульсов между Ио, Эо и ПТо; 6 - влия­ние высших отделов ЦНС на жизненно важные отделы дыхательного центра;8,9 —переключение импульсов от Ио на мотонейроны в шейных и грудных сегментах спинного мозга; 10 —начало афферентных волокон, идущих к Эо в стволеп. vagus; 11,12 —эфферентные пути к экспираторным мышцам

нается от инспираторных нейронов и проводит импульсы к нейронам так называемого пневмотаксического отдела дыха­тельного центра, расположенного в мосту мозга. Этот отдел координирует взаимодействие инспираторных и экспиратор­ных нейронов продолговатого мозга. Пневмотаксический от- Дел перерабатывает пришедшую от инспираторного центра информацию и посылает поток импульсов, возбуждающих нейроны экспираторного центра. Когда потоки импульсов, приходящих от пневмотаксического отдела и от афферентов вагуса, сходятся на экспираторных нейронах, последние быст­ро возбуждаются и тормозят активность инспираторных ней­ронов по принципу реципрокного торможения. Импульсация к мышцам вдоха прекращается и они расслабляются. Этого до­статочно, чтобы произошел спокойный выдох. При усиленном выдохе от экспираторных нейронов посылаются импульсы, вызывающие сокращение внутренних межреберных мышц и мышц брюшного пресса.

Вышележащие отделы головного мозга оказывают корри­гирующие влияния на нейроны отделов дыхательного центра в продолговатом мозге и мосту. О наличии влияния коры боль­шого мозга на отделы дыхательного центра в спинном и про­долговатом мозге свидетельствует возможность произвольно­го изменения частоты, глубины и задержки дыхания челове­ком. Корковые влияния передаются на эти центры, как через пирамидные, так и экстрапирамидные пути. Кора большого мозга обеспечивает включение дыхательной системы в пове­денческие реакции, речевую функцию, пение.

Гипоталамус играет ведущую роль в изменениях дыхания, свя­занных с реакциями на болевые раздражения, физическую на­грузку, эмоциональное возбуждение, а также обеспечивает во­влечение дыхательной системы в терморегуляторные реакции.

Рецепторык кислороду,углекислому газуи показателю рН.Рецепторы, чувствительные к изменениям напряжения кислорода, углекислого газа и водородных ионов, обеспечива­ют непрерывный контроль за уровнем этих гомеостатических констант в артериальной крови и ликворе. Эти рецепторы ак­тивны уже при нормальном уровне рС>2, рСС>2 и показателя рН и от них идет непрерывная (тоническая) импульсация, спо­собствующая активации инспираторных нейронов.

Рецепторы ккислороду сосредоточены вкаротидном тель­це (область бифуркации общей сонной артерии). У животных этирецепторы имеются и в тельце дуги аорты. На снижение рС>2 в артериальной крови клетки каротидного тельца реагиру­ют усилением выделения медиатора допамина. Допамин акти­вирует рецепторные окончания афферентных волокон языко- глоточного нерва. Таким образом, активность рецепторов к кислороду возрастает при снижении его напряжения в артери­альной крови. Импульсы от нихвозбуждают инспираторные нейроны, и вентиляция легких увеличивается главным обра­зом за счет учащения дыхания.

Рецепторы, чувствительные к углекислому газу, имеются в каротидном тельце и в дуге аорты, а также непосредственно в продолговатом мозге (центральные хеморецепторы, сосредо­точенныев тельцах диаметром около 2 мм) в области выхода подъязычного нерва. Рецепторы к углекислому газу восприни­маюттакже изменения концентрации ионов Н+Рецепторы артериальных сосудов контролируют рС02и рН плазмы кро­ви. Они активируются при увеличении рС02, (или снижении рН плазмы). Исходящая от них импульсация вызывает увели­чение вентиляции легких главным образом за счет углубления дыхания. Центральные хеморецепторы контролируют рС02и рН ликвора и межклеточной жидкости продолговатого мозга. Они активируются при накоплении углекислого газа или под- кислении ликвора и возбуждают инспираторные нейроны, вы­зывая усиление дыхания.

Чрезмерное увеличение активности рецепторов по рС02и рН приводит к возникновению субъективно тягостных, мучи­тельных ощущений удушья, нехватки воздуха. В этом легко убедиться, если сделать длительную задержку дыхания. Важно помнить о том, что вызванная недостатком кислорода в арте­риальной крови стимуляция артериальных рецепторов к кис­лороду не сопровождается субъективно неприятными ощуще­ниями. В условиях, когда рС02и рН крови поддерживаются нормальными, человек, как правило, не ощущает недостатка кислорода. Следствием этого могут быть опасные ситуации, возникающих в быту или при подключении человека к дыха­тельным аппаратам (замкнутым системам с газовыми смеся­ми). Наиболее распространенными являются отравления угарным газом (смерть в гараже, другие бытовые отравления), когда человек из-за отсутствия явных ощущений удушья не предпринимает защитных действий.

Рецепторы дыхательных путей и легких.Особенно обильно снабжены рецепторами верхние дыхательные пути. В слизистой оболочке верхних носовых ходов между эпителиальными и опор­ами клетками расположены обонятельные рецепторы.Они Представляют собой чувствительные нервные клетки, имеющие Подвижные реснички, которые обеспечивают рецепцию пахучих Веществ. Благодаря этим рецепторам и обонятельному анализа-ТоРУ организм получает возможность восприятия запахов, сигна- визирующих об окружающей обстановке, наличии пищевых ве­ществ, вредных агентов. Воздействие некоторых пахучих веществ вызывает рефлекторное изменение проходимости дыхательных путей (в частности, у людей с обструктивным бронхитом может вызвать астматический приступ).

Остальные рецепторы дыхательных путей и легких подраз­деляют на три группы: 1) рецепторы растяжения, 2)ирритант- ные, 3) юкстаальвеолярные.

Рецепторы растяжениярасполагаются в мышечном слое дыхательных путей. Адекватным раздражителем для них является растяжение мышечных волокон, обусловленное из­менением внутриплеврального давления и давления в просве­те дыхательных путей при осуществлении вдоха. Важнейшая функция этих рецепторов — контроль за степенью растяжения легких. Благодаря этим рецепторам функциональная система регуляции дыхания контролирует интенсивность вентиляции легких.

Имеется также ряд экспериментальных данных о наличии в легких рецепторов спадения, активирующихся при сильном уменьшении объема легких.

Ирритантные рецепторыобладают свойствами механо- и хеморецепторов. Они расположены в слизистой оболочке дыхательных путей и активируются при действии интенсивной струи воздуха во время вдоха или выдоха, действии крупных пылевых частиц, скоплении гноя, слизи, попадании в дыха­тельные пути частиц пищи. Эти рецепторы чувствительны так­же к действию раздражающих газов (аммиак, пары серы) и различных химических факторов.

Юкстаальвеолярные рецепторырасположены в интер- стициальном пространстве легочных альвеол у стенок крове­носных капилляров. Адекватным раздражителем для них явля­ется увеличение кровенаполнения легких и возрастание объ­ема межклеточной жидкости (они активируются, в частности, при отеке легких). Раздражение этих рецепторов рефлекторно вызывает возникновение частого поверхностного дыхания.

Рефлекторные реакции с рецепторов дыхательных путей- Срецепторов растяжения и ирритантных рецепторов возника­ют многочисленные рефлекторные реакции, обеспечиваюШие саморегуляцию дыхания, защитные рефлексы и рефлексЫ' влияющие на функции внутренних органов. Такое подраздеЛе' ние этих рефлексов весьма условно, так как один и тот же реф' лекс в зависимости от силы раздражителя может или обеспе­чивать регуляцию смены фаз цикла спокойного дыхания, или иметь защитный характер. Афферентные и эфферентные пути этих рефлексов проходят в стволах обонятельного, тройнично­го, лицевого, языкоглоточного, блуждающего и симпатическо­го нервов, а замыкание большинства рефлекторных дуг — в структурах дыхательного центра продолговатого мозга с под­ключением ядер вышеперечисленных нервов.

Рефлексы саморегуляции дыхания.Они обеспечивают регуляцию глубины и частоты дыхания, а также просвета ды­хательных путей. Инспираторно-тормозящий рефлекс Ге­ринга — Брейерапроявляется в том, что при растяжении лег­ких, обусловленном вдохом, или при аппаратном вдувании воз­духа рефлекторно тормозится вдох и стимулируется выдох. При сильном растяжении легких этот рефлекс приобретает за­щитную роль, предохраняя легкие от перерастяжения. Экспи- раторно-облегчающий рефлекспроявляется в ситуации, когда воздух в дыхательные пути подается под давлением во время выдоха (это бывает при аппаратном искусственном ды­хании и ряде других условий). В этом случае рефлекторно про­длевается выдох и тормозится вдох. Рефлекс на спадение лег­кихвозникает при максимально глубоком выдохе или при ра­нениях грудной клетки и образовании пневмоторакса. Он про­является частым поверхностным дыханием, препятствующим дальнейшему спадению легких.

Среди рефлексов, регулирующих просвет дыхательных пу­тей или силу сокращения дыхательных мышц, имеется реф­лекс на снижение давления в верхних дыхательных путях, который проявляется сокращением мышц, расширяющих ды­хательные пути или препятствующих их закрытию. При сни­жении давления в носовых ходах и глотке рефлекторно сокра­щаются мышцы крыльев носа и мышцы рта, смещающие язык вентрально, кпереди (подбородочно-язычная и другие мыш-Ubi). Этот рефлекс способствует развитию вдоха, снижению сопротивления и увеличению проходимости дыхательных пу-Тейдля воздуха.

Снижение давления воздуха в просвете глотки рефлектор- н° вызывает уменьшение силы сокращения диафрагмы. Этотгл°точно -диафрагмальный рефлекспрепятствует дальней- снижению давления в глотке, слипанию ее стенок и раз-8итию апноэ.

Рефлекс закрытия голосовой щеливозникает в ответ на раздражение рецепторов глотки, гортани и корня языка. При этом смыкаются голосовые и надгортанные связки и дыхатель­ные пути получают защиту от попадании пищи, жидкости и раздражающих газов. У пациентов без сознания и находящих­ся под наркозом закрытие голосовой щели может быть непол­ным и рвотные массы могут попадать в трахею, вызывая аспи- рационную пневмонию.

Рино-бронхиальные рефлексывозникают при раздраже­нии ирритантных рецепторов носовых ходов и носоглотки и проявляются сужением просвета нижних дыхательных путей. У людей, склонных к спазмам гладкомышечных волокон тра­хеи и бронхов, раздражение ирритантных рецепторов носа и даже некоторые запахи могут провоцировать развитие присту­па бронхиальной астмы.

К классическим защитным рефлексам дыхательной систе­мы принадлежат также кашлевой, чихательный и рефлекс ны­ряльщика. Кашлевой рефлекс вызывается раздражениемир­ритантных рецепторов глотки и нижележащих дыхательных путей. При его реализации вначале происходит короткий вдох, затем смыкание голосовых связок, сокращение мышц выдоха, увеличение подсвязочного давления воздуха. Затем голосовые связки мгновенно раскрываются и воздушная струя с большой линейной скоростью проходит через дыхательные пути и от­крытый рот в атмосферу. При этом из дыхательных путей изго­няется избыток слизи, гноя, продуктов воспаления или случай­но попавшие пищевые частицы. Продуктивный, влажный ка­шель способствует очищению бронхов, выполняет дренажную функцию и вряде случаев вызывается искусственно для обес­печения проходимости бронхов. Рефлекс чиханиявозникает при раздражении рецепторов носовых ходов и развивается по­добно кашлевому рефлексу, за исключением того, что изгна­ние воздуха происходит через носовые ходы. Одновременно усиливается слезообразование ислезная жидкость по слезно- носовому каналу поступает в полость носа иувлажняет ее стенки. Все это способствует очищению носоглотки и носовых ходов. Рефлекс ныряльщикавызывается попаданием жидкос­ти вносовые ходы и проявляется остановкой дыхательныхдви­жений, препятствуя прохождению жидкости в нижележащие дыхательные пути.

Механизмы поддержания проходимости дыхательных путей.На проходимость дыхательных путей влияют толщина слоя слизистой оболочки, количество образующейся и изгоня­емой слизи, проницаемость сосудов и транссудация жидкости в просвет дыхательных путей, давление воздуха в дыхательных путях. Однако регуляция проходимости дыхательных путей осуществляется главным образом изменением тонуса мышц, входящих в структуры дыхательных путей или влияющих на устойчивость их стенок. Тонус этих мышц изменяется под вли­янием нервных и гуморальных факторов. При спонтанном ды­хании сопротивление дыхательных путей во время вдоха пони­жается, а при выдохе — повышается. Наименьший просвет и, следовательно, наибольшее сопротивление потоку воздуха в дыхательных путях имеют нос, глотка и голосовая щель.

Обеспечение проходимости верхних дыхательных путейосуществляется за счет изменений тонуса поперечно­полосатых мышц, иннервируемых от двигательных ядер трой­ничного, языкоглоточного и блуждающего нервов. Особенно важно наличие тонуса этих мышц для обеспечения проходи­мости глотки, которая в отличие от других участков дыхатель­ных путей не имеет собственного костного или хрящевого кар­каса и ее стенки могут слипаться при снижении внутриглоточ- ного давления воздуха. При вдохе на уровне глотки создаются условия для появления отрицательного (меньшего, чем атмо­сферное) давления. В таком падении давления имеет значение высокое сопротивление току воздуха носовых ходов, а также то, что при возрастании скорости движения воздуха его давле­ние на боковые стенки уменьшается (эффект Бернулли). Ожи­рение, увеличение миндалин, отечность уменьшают просвет глотки, способствуют возрастанию линейной скорости струи потока воздуха в глотке, снижению давления на ее стенки и их коллабированию (перекрытию, слипанию).

Механизмом, противодействующим перекрытию верхних дыхательных путей при вдохе, является сократительная актив­ность по крайней мере 24 пар мышц рта и гортани. Эти мышцы Участвуют не только в обеспечении внешнего дыхания, но и в глотании, формировании речевых фонем, ряде других рефлек­торных реакций.

В обеспечении проходимости глотки особенно важны со­кращения подбородочно-язычной, подбородочно-подъязыч- н°й, грудино-подъязычной, щито-подъязычной мышц, а такжемышц языка. Тонус вышеперечисленных мышцувеличивается при вдохе. Благодаря этому подъязычная кость, надгортанник, язык и передняя стенка ротоглотки смещаются вентрально, увеличивая просвет глотки, устойчивость ее стенок и проходи­мость для воздуха.

Перекрытие верхних дыхательных путей на вдохе — сонное апноэ легче всего происходит во сне (особенно у детей). Сон­ным апноэ называют остановку дыхания, длящуюся не менее 10 с, или эпизоды резкого уменьшения вентиляции легких. При наличии частых эпизодов сонного апноэ у взрослых людей развивается ряд нарушений в организме, а у детей первого года жизни сонное апноэ может стать причиной смерти.

При интенсивном вдохе снижается также давление воздуха в носовых ходах, но их перекрытию препятствует сокращение мышц крыльев носа.

Обеспечение проходимости нижних дыхательных путей происходит за счет нервных и гуморальных влияний на тонус мышц гортани, трахеи и бронхов. Передача нервных влияний на тонус этих мышц осуществляется по нервным во­локнам, проходящим в стволе блуждающего нерва.

Наибольшим сопротивлением потоку воздуха обладает об­ласть голосовой щели в гортани. При вдохе ее сопротивление уменьшается, так как голосовые связки расходятся из-за сокра­щения отводящих мышц гортани. При выдохе тонус этих мышц снижается и просвет голосовой щели уменьшается. Тонус глад­комышечных волокон бронхов также ритмически изменяется в соответствии с фазами дыхательного цикла. При вдохе он сни­жается (бронхи несколько расширяются), при выдохе — увели­чивается. Это происходит в соответствии с ритмом изменений тонуса ядер блуждающего нерва. Тонус центра вагуса повышен во время выдоха, минимален — в середине вдоха.

Медиатором в окончаниях большинства волокон блуждаю­щего нерва, иннервирующих гладкие мышцы дыхательных пу­тей, является ацетилхолин. Он вызывает сокращение этих мышц через активацию М2-холинорецепторов, находящихся на постсинаптических мембранах гладкомышечных волокон. Именно с учащением импульсаций по холинергическим волок­нам связано развитие ряда спастических реакций и уменьше­ние проходимости бронхов для воздуха. Увеличение активнос­ти холинергических волокон сопровождается также возраста­нием образования трахеобронхиального секрета и слоя слизи в дыхательных путях.

Сужение просвета бронхов вызывается также за счет акти­вации местных рефлекторных реакций, замыкающихся в веге­тативных ганглиях дыхательных путей. Эфферентные нейроны таких местных рефлекторных дуг передают свое констриктор- ное вияние на гладкомышечные волокна с помощью медиатора — вещества П.

Наряду с констрикторными холинергическими волокнами в стволе блуждающего нерва идут так назвываемые не холинер- гические, не адренергические волокна (предположительно влияние таких волокон на мышцы дыхательных путей переда­ется через медиатор — ВИП). Импульсация по не холин-, не адренергическим волокнам вызывает расслабление гладких мышцдыхательных путей и увеличение проходимости бронхов. Расслабление бронхиальных мышц происходит также при уве­личении тонуса симпатических нервных центров. Прямых си- наптических связей симпатических волокон с гладкими мыш­цами бронхов нет. Симпатические волокна, идущие к бронхам, заканчиваются в стенках кровеносных сосудов. При выделе­нии норадреналина симпатическими окончаниями он за счет диффузии достигает гладкомышечных волокон бронхов и, свя­зываясь с р2-адренорецепторами, вызывает расслабление этих волокон. Кроме того, бронхорасширяющий эффект от ак­тивации симпатических нервных волокон может реализовать­ся благодаря наличию их окончаний в парасимпатических ган­глиях дыхательных путей. Выделяемый этими окончаниями норадреналин тормозит передачу возбуждения в парасимпати­ческих синапсах.

Симпатомиметические (подобные норадреналину и адрена­лину) препараты, активирующие Р2-аДРеноРеи.ептоРЬ|> оказы­вают бронхорасширяющий эффект и при попадании на слизис­тую оболочку дыхательных путей за счет вдыхания их в виде аэ­розолей. Это используется в медицинской практике для снятия или предупреждения приступов бронхиальной астмы (препара­ты альбутерол, беротек). Такие препараты кроме расшире- ния бронхов увеличивают скорость очищения дыхательных пу- теи, стимулируя движение ресничек мерцательного эпителия.

Гуморальные влияния на проходимость нижних ды- *агпельных путей многочисленны и реализуются как за счет Иологически активных веществ, приносимых с кровью, так и

за счет местных клеточных паракринных влияний. Расслабле­нию гладкомышечных волокон трахеи и бронхов, а также по­вышению устойчивости к инфицированию дыхательных путей способствует эпителиальный фактор расслабления, который непрерывно образуется в нормальном эпителии.

При повреждениях эпителия раздражающими веществами и продуктами воспаления выработка эпителиального фактора расслабления нарушается, и на этом фоне многочисленные агенты оказывают интенсивное констрикторное влияние на гладкие мышцы и слизистую оболочку дыхательных путей. При этом Т-лимфоциты и макрофаги образуют интерлейкины- 2, -3, -4, -5, -6, тучные клетки соединительной ткани выделяют гистамин, лейкотриены (особенно лейкотриен Д4), брадики­нин, простагландины Е2 и ряд других провоспалительных веществ. Эти вещества вызывают сокращение гладкомышеч­ных волокон трахеи и бронхов, увеличение секреции слизи, отек слизистой оболочки. Констрикторное действие ацетилхо­лина, гистамина, лейкотриена Д4 на гладкомышечные волокна реализуется через связь с мембранными рецепторами, кото­рые через G-белок активируют мембраносвязанную фосфоли- пазу С. Эта фосфолипаза через активацию системы вторичных посредников инозитолтрифосфата и диацилглицерола обеспе­чивает выход ионов Са из саркоплазматического ретикулу- ма в саркоплазму и возникновение сокращения.

Контрольные вопросы и задания

  1. Что называют дыханием? Каковы особенности взаимодей­ствия организма со средой через дыхательную систему?

  2. Как дыхание подразделяется на этапы? Дайте характерис­тику внешнего дыхания.

  3. Какова физиологическая роль дыхательных путей, механиз­мы их очищения и кондиционирования воздуха?

  4. Каковы физиологическая роль и свойства легких?

  5. Что такое эластическая тяга легких и грудной клетки?

  6. Чем обусловлено отрицательное давление в плевральной ще­ли и механизм его поддержания?

7 Каковы механизмы вдоха и выдоха?

    1. Дайте характеристику методов исследования внешнего дыхания.

    2. Что такое легочные объемы и емкости? Каковы их соотно­шение и величина?

10. Что такое физиологическое мертвое пространство? Как^е пространства входят в его состав?

      1. В чем заключаются различия понятий вентиляции легких (МОД). альвеолярной вентиляции, максимальной вентиляции легких?

      2. Дайте характеристику потоковых показателей внешнего дыхания.

      3. Проанализируйте кривую поток—объем.

      4. Охарактеризуйте обструктивные, рестриктивные и сме­шанные нарушения внешнего дыхания, признаки этих нарушений.

      5. Каков состав атмосферного, выдыхаемого и альвеолярного воз­духа? В чем заключается механизм поддержания относительного по­стоянства состава альвеолярного воздуха при спокойном дыхании?

      6. В чем проявляется взаимосвязь вентиляции, кровотока в легких и гравитации?

      7. Охарактеризуйте транспорт кровью кислорода, кривую диссоциации Нв02. Каково влияние разных факторов на сродство гемоглобина к кислороду?

      8. Охарактеризуйте транспорт кровью углекислого газа.

      9. В чем выражается газообмен кислорода и углекислого газа в тканях? Что такое гипоксемия, гипоксия, гиперкапния?

      10. Что такое тканевое дыхание? В чем заключается его значе­ние для организма ?

      11. В каких структурах происходит и какими комплексами фер­ментов обеспечивается тканевое дыхание?

      12. Расскажите о механизме, обеспечивающем синтез АТФ за счет электрохимического градиента митохондриальной мембра­ны? Что такое разобщение окислительного фосфорилирования?

      13. Охарактеризуйте функциональную систему регуляции дыхания.

      14. Охарактеризуйте дыхательный центр, его локализацию жизненно важные отделы.

      15. В чем заключается роль гипоталамуса и высших отделов го­ловного мозга в регуляции дыхания?

      16. Опишите локализацию и охарактеризуйте рецепторы к 02, СО, и рН? Каковы рефлекторные влияния с этих рецепторов?

27 Охарактеризуйте рецепторы верхних дыхательных путей и вызываемые с них рефлексы.

        1. Охарактеризуйте рецепторы нижних дыхательных путей.

        2. Каковы рефлекторные влияния с нижних дыхательных пу­тей? Какова роль рефлексов Геринга—Брейера?

        3. В чем заключаются механизмы регуляции проходимости верх­них дыхательных путей?

        4. В чем заключаются механизмы регуляции проходимости Нижних дыхательных путей?

        5. Каковы гуморальные влияния на проходимость нижних дыха- тельных путей?

Ситуационные задачи

          1. Рассчитайте величину ДЖЕЛ и должную ПОСдля женщины, име­ющей рост 170 см, массу 50 кг, возраст 20 лет.

          2. У пациента величина общей емкости легких - 6,5 л, РОвд = 3,5 л, ДО = 0,5 л, РОВЬ1Д = 1,5 л. Рассчитайте, какова у этого человека величи­на ФОЕ и остаточного объема. Какова у него альвеолярная вентиляция, если частота дыхания 12?

          3. Раненому мужчине среднего телосложения и роста подключили аппарат искусственного дыхания и установили дыхательный объем пода­ваемого воздуха 600 мл с частотой 12 дыхательных движений в минуту. Объем аппаратного мертвого пространства (подсоединяющего шланга) - 250 мл. Какая величина альвеолярной вентиляции в этих условиях у па­циента? Ваше предположение о достаточности такой вентиляции. Сде­лайте арифметический расчет.

          4. Каким образом положение тела человека может повлиять на вели­чину физиологического мертвого пространства и ЖЕЛ?

          5. Зарисуйте схему нервных связей дыхательного центра и объясните взаимодействие его структур при формировании дыхательного цикла?

          6. С помощью компьютерного спирографа MAC-1 установлено, что у пациента: ФЖЕЛ = 90% от ДЖЕЛ, потоковые показатели ПОС - 92%, МОС25 - 88%, МОС50 - 82%, МОС75 - 70% от должной вели­чины, тест Тиффно — 65%. Какое заключение о внешнем дыхании следу­ет сделать по этим данным?

7 У испытуемого потребление кислорода составляет 250 мл/мин, объем крови — 5 л, содержание гемоглобина — 150 г/л. Рассчитайте, ка­кое количество кислорода содержится в крови этого человека. На какое время хватило бы этого кислорода при названном уровне его потребления?

8. Какие физиологические механизмы обеспечивают и способствуют развитию первого вдоха новорожденного?