Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Методичка БФХ / методичка БФХ итог.doc
Скачиваний:
191
Добавлен:
10.02.2017
Размер:
2.83 Mб
Скачать

2.6. Теоретические вопросы для самоподготовки

  1. Типы транспорта веществ через клеточную мембрану (пассивный, активный транспорт). Их краткая характеристика и классификация с позиции переноса ионов через мембрану.

  2. Строение и функции клеточных мембран.

  3. Функции биополимеров, входящих в состав клеточных мембран.

  4. Различие в составе биополимеров клеточных мембран микроорганизмов в зависимости от условий окружающей среды.

  5. Понятие о трансмембранных потенциалах. Na, K – помпа (механизм создания трансмембранного потенциала, основная функция – схема с пояснениями).

  6. Понятие о трансмембранных потенциалах. Протонная помпа (механизм создания трансмембранного потенциала, основная функция – схема с пояснениями).

  7. Гипотеза Митчелла, понятие о разобщителях.

  8. Понятие о трансмембранных потенциалах. Са – помпа (механизм создания трансмембранного потенциала, основная функция – схема с пояснениями).

  9. Механизм создания трансмембранного потенциала. Классификация типов транспорта с позиции переноса катионов через мембрану (краткая характеристика).

  10. Типы фотосинтеза, их общая характеристика.

  11. Оксигенный фотосинтез (принципиальная схема работы с пояснениями).

  12. Аноксигенный фотосинтез на примере бактерий, окисляющих H2S (принципиальная схема работы с пояснениями).

  13. Функции бактериородопсина в клетках галобактерий.

  14. Механизмы регуляции внутриклеточного метаболизма.

  15. Понятие об опероне.

  16. Регуляция клеточного метаболизма на примере репрессии. Регуляция клеточного метаболизма на примере индукции.

  17. Основы математического моделирования в биологии (на примере стехиометрических расчетов).

  18. Математические модели роста численности популяции (модель Мальтуса).

  19. Математические модели роста численности популяции (модель Ферхюльста).

  20. Математические модели роста численности популяции (модель Вольтера).

3. Ферментативная кинетика и катализ

3.1. Общая характеристика ферментов

Изучение ферментов представляет особый интерес, так как эта область знания находится на стыке биологических и физических наук. С одной стороны, ферменты имеют исключительное значение в биологии. Жизнь зависит от сложной совокупности химических реакций, осуществляемых специфическими ферментами, и любое изменение действия ферментов может повлечь за собой серьёзные последствия для живого организма. С другой стороны, ферменты как катализаторы всё больше и больше привлекают внимание биотехнологов. Изучение механизма действия ферментов представляет собой одну из самых увлекательных областей современного научного исследования.

Ферменты, или энзимы, представляют собой высокоспециализированный класс веществ преимущественно белковой природы. Молекулярная масса даже самых маленьких ферментов составляет десятки тысяч дальтон (Да), а у многих – сотни тысяч Да. Одна из причин, по которой ферменты так велики, заключается в том, что длинная цепь (или цепи), из которой они состоят, должна свернуться с образованием некоего кармана, называемого активным центром. Попадая в такой карман, молекула вещества с исключительной точностью атакуется функциональными группами фермента. Под «атакой» здесь следует понимать химическое превращение вещества, которое принято называть субстратом, при участии данного фермента.

Современная классификация ферментов предполагает их разделение на шесть основных классов (оксидоредуктазы, трансферазы, гидролазы, лиазы, изомеразы, лигазы) по типу катализируемой реакции. В соответствии с этим, разработана номенклатура, где для каждого фермента установлен код, состоящий из четырёх чисел. Первое число означает, к какому из шести классов относится фермент; второе указывает подкласс (как правило, природу донора); третье – подподкласс (как правило, природу акцептора); четвёртое число – это порядковый номер фермента в его подподклассе.

Однако существует и другая классификация ферментов, основанная на их химическом составе. Она предполагает разделение их на простые и сложные. Первые целиком представлены полипептидными цепями и при гидролизе полностью распадаются на аминокислоты. Вторые (холоферменты) помимо белковой части, называемой апоферментом, включают небелковый компонент (простетическую группу): коферменты (низкомолекулярные органические соединения, входящие в состав активного центра фермента, некоторые из них выполняют функцию переноса функциональных групп или электронов) или/и кофакторы (ионы металлов, стабилизирующие пространственную конформацию ферментов).

Ферменты используются живыми организмами для осуществления с высокой скоростью многих взаимосвязанных химических реакций, включая синтез, распад и взаимопревращение огромного множества разнообразных химических соединений. Каждый биохимический процесс, как и любая химическая реакция, характеризуется энергией активации, то есть свободной энергией, которую нужно предать реагирующим молекулам, чтобы произошло химическое превращение. Таким образом, энергия активации – это энергетический барьер, который нужно преодолеть, чтобы произошла реакция.

В процессе химических реакций, катализируемых как ферментами, так и неорганическими катализаторами, молекулы вступают в так называемое переходное состояние, характеризующиеся менее устойчивой структурой и наибольшей свободной энергии. Катализаторы снижают свободную энергию переходного состояния и, стабилизируя его, облегчают протекание реакции.

Определение ферментов как веществ, снижающих энергию активации, не точно. В настоящее время установлено, что ферменты вступают во взаимодействие с веществами с образованием фермент-субстратного комплекса и направляют реакцию по новому пути с более низкой энергией активацией, аналогично протекают химические процессы с участием неорганических катализаторов.

Следует отметить, что ферменты имеют общие свойства с небиологическими катализаторами:

  • ферменты не входят в состав конечных продуктов реакции и выходят из неё, как правило, в первоначальном виде, то есть они не расходуются в процессе катализа (следует отметить, что для некоторых ферментов в настоящее время установлено возможность модификации и даже распад после осуществления превращения субстрата в продукт);

  • ферменты не могут реализовать протекание тех реакции, которые противоречат законам термодинамики, то есть ферменты осуществляют катализ только энергетически возможных процессов, при этом совокупная энергия системы в ходе реакции не изменяется;

  • ферменты не изменяют направление реакции и не смещают положение равновесия, а лишь ускоряют его достижение.

Однако у ферментов есть и специфические свойства:

  • ферменты обладаю значительно большей эффективностью в сравнении с небиологическими катализаторами (скорость протекания реакции с участием ферментов выше на несколько порядков);

  • биохимические процессы, протекающие с участием ферментов, в отличие от химических реакций, регулируемы путём изменения каталитической активности ферментов;

  • ферментативные реакции в большинстве своём протекают при условиях, близких к физиологическим, в то время как для эффективного катализа реакции с участием неорганических катализаторов необходимо создание жёстких специфических условий (высокие температуры, давления и прочие);

  • ферментативный катализ не подчиняется закону действующих масс;

  • ферменты обладают высокой специфичностью, как по отношению к субстрату, так и к типу катализируемой реакции. При этом можно выделить ферменты, обладающие относительной (групповой), абсолютной и стериоспецифичностью.

Уникальные свойства ферментов обусловлены особенной структурой активного центра фермента и конформационной и электростатической комплементарностью между молекулами субстрата и фермента.

Согласно современному представлению о механизме взаимодействия фермента с субстратом, в соответствии с теорией индуцированного соответствия, активный центр фермента достаточно гибок и может изменять свою конформацию при связывании с молекулой субстрата. У активного центра фермента принято выделять две основные функции: образование связей между молекулами фермента и субстрата и осуществление непосредственно самого превращения субстрата в продукт. Иногда даже говорят о двух различных активных центрах фермента – адсорбционном и каталитическом.

Природа связей между ферментом и субстратом в фермент субстратном комплексе зависит от наличия в молекуле субстрата функциональных групп различного типа. При наличии в молекуле субстрата заряженных групп (например, у аминокислот) связывание их с ферментами происходит преимущественно за счёт электростатических сил.

При отсутствии заряженных групп у гидрофильных (полярных) субстратов (например, сахаров) взаимодействие должно быть обусловлено водородными связями. В случаи незаряженных гидрофобных (неполярных) субстратов (например, содержащих углеводородные цепи) взаимодействие должно быть обусловлено гидрофобными (вандерваальсовыми) силами.

Соседние файлы в папке Методичка БФХ