Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ФОМ, Ч 1.doc
Скачиваний:
10
Добавлен:
07.12.2018
Размер:
1.18 Mб
Скачать

Глава II. Волны

§ 2.1.Упругие волны

Колебания, возбуждаемые в какой-либо области пространства, могут передаваться соседним областям, удаляясь от источника. Такой процесс распространения колебаний называется волной. Область пространства, занятую волной, называют волновым полем. Все точки волнового поля колеблются согласованно друг с другом. Волновое поле может увеличиваться в размерах и перемещаться в пространстве. Это явление широко распространено в природе и технике: достаточно вспомнить, что звук - упругие, а свет - электромагнитные волны.

Рассмотрим процесс распространения колебаний в упругом стержне, по торцу которого бьют молотком (рис. 2.1). Будем считать стержень достаточно длинным, теоретически бесконечно длинным. В момент удара деформируется, а именно, сжимается только ближайший к торцу элемент объема стержня. Возникшая в нем упругая сила стремится вернуть этот объем в исходное положение, при этом левое сечение рассматриваемого объема движется влево, правое - вправо. Смещение правого сечения сжимает прилегающий к нему следующий элемент объема, который упруго деформируется, создавая возвращающую силу, растягивающую сжатый объем. В результате вдоль стержня распространяются процессы сжатия и растяжения, сопровождающиеся колебаниями его точек вдоль оси l.. Мысленно выделим малый объем стержня V=Sl, заключенный между сечениями 1 и 2, где S- площадь сечения стержня (рис. 2.2). При деформации сечение 1 сместится на величину 1, сечение 2 - на величину- 2, при этом возникнут упругие силы F1 и F2, так что уравнение движения (второй закон Ньютона) рассматриваемого объема V примет вид: F2 - F1 =Va, где - плотность материала стержня, a - ускорение. Поделив обе части уравнения движения на площадь стержня S и учитывая, что нормальное напряжение = F/S, получим:

2 -1= ax (2.1)

Согласно закону Гука =E, где E - модуль Юнга, -деформация, т.е. относительное удлинение. В исходном состоянии рассматриваемый нами участок стержня имел длину l. При распространении колебаний вследствие различия смещений сечений 1 и 2 его удлинение составило величину =2 -1, соответственно относительное удлинение - ./l. При l 0 относительное удлинение называется деформацией =d/dl; деформации 1=(d/dx)1 и 2=(d/dx)2 в сечениях 1 и 2 соответственно могут различаться. C учетом рассмотренного, уравнение (2.1) примет вид:

E((d/dx)2 - (d/dx)1)=E(d/dl) = al (2.2)

Учитывая, что ускорение a= d2/dt2 при малых l примерно одинаково для всех точек рассматриваемого малого объема V, а также преобразовав изменение деформации следующим образом: (d/dx)2 - (d/dx)1= (d/dx)= (d2/dx2)x, получим уравнение движения в виде:

E(d2/dl2)=(d2/dt2) (2.3)

Найдем решение этого уравнения, исходя из физических соображений. Пусть левый торец стержня (l=0), изображенного на рис.2.1, колеблется по закону (0,t)=Asint и является источником колебаний. Распространяясь со скоростью , эти колебания достигнут сечения стержня с координатой l спустя время =l/, так что закон движения этих точек имеет вид:

(x,t)=Asin(t-)= Asin(t-l/) (2.4)

Прямой подстановкой убеждаемся, что (2.4) является решением (2.3) при условии, что

= (2.5)

Из вывода формулы (2.4) следует, что имеет смысл скорости распространения фазы и называется фазовой скоростью. Используя (2.5), перепишем уравнение (2.3) в виде:

d2/dl2=(1/2)( d2/dt2) (2.6)

Уравнение (2.6) называется волновым уравнением. Запомним, если какой-либо физический процесс описывается уравнением, где частная производная второго порядка по координате пропорциональна частной производной второго порядка по времени, то это волновой процесс, то-есть процесс распространения колебаний с фазовой скоростью, определяющейся коэффициентом пропорциональности между этими частными производными. Позднее мы еще не раз встретимся с волновым уравнением.

Направление распространения волны (ось l) называется лучом. Уравнение (2.4) описывает закон колебаний разных точек луча, причем все точки колеблются с одинаковой частотой , одинаковой амплитудой A и собственной фазой =(t-l/), величина которой зависит от времени t и расстояния l точки от источника колебаний. Точки, колеблющиеся в одинаковой фазе, образуют поверхность, называемую волновой. “Передовая” волновая поверхность, отделяющая волновое поле от невозмущенной области пространства, называется фронтом волны. В нашем случае волновые поверхности и фронт волны имеют вид плоскостей l=const, поэтому формула (2.4) называется уравнением плоской бегущей волны или луча. Источником плоской волны является гармонически колеблющаяся плоскость - левый конец стержня (рис. 2.1). Если источником колебания в однородной изотропной среде является точка, то по аналогии с (2.4) получим:

(r,t)=Asin(t-)= Asin(t-r/) (2.7)

где r- расстояние от точечного источника. Волновые поверхности и фронт волны являются сферами, поэтому волна называется сферической. У цилиндрической волны фронт и волновые поверхности имеют вид коаксиальных цилиндров, их осью является источник.

Из уравнений (2.4) и (2.7) видно, что каждая точка волнового поля колеблется гармонически, и что в каждый момент времени смещения разных точек луча являются гармонической функцией координаты. Таким образом, волна - периодический процесс в пространстве и во времени. На рис. 2.2 представлена “фотография“ волны, бегущей вдоль оси х. Характеристикой пространственной периодичности служит длина волны . Длиной волны называется расстояние между двумя ближайшими точками, лежащими на одном луче и колеблющимися одинаково.

Фазы колебаний этих точек отличаются на 2:

1-2=(t-x1/)-(t-x2/)=2. Учитывая, что =x2-x1, получим,

= = / (2.8)

Таким образом, за время, равное периоду колебаний, волна (ее фронт) успевает распространиться на расстояние, равное длине волны. Используя понятие длины волны, уравнение луча можно записать в виде:

(x,t)=A sin(t-2x/)= A sin( t-kx) (2.9)

где k=2x/= / - волновое число. Оно показывает, сколько длин волн (пространственных периодов) укладывается на 2 метрах и аналогично круговой частоте , показывающей, сколько временных периодов T укладывается в промежутке времени 2 секунд.

Упругая волна, возбуждаемая в стержне (рис.2.1), представляет собой распространение деформаций сжатия и растяжения, так что колебания точек стержня происходят вдоль направления распространения волны. Такая волна называется продольной. Формула (2.5) выражает скорость распространения упругих продольных волн в твердом теле. Распространение деформаций сдвига в твердых телах, например, волны в струне, связано с колебаниями точек в перпендикулярном к лучу направлении. Такая волна называется поперечной. Ее скорость распространения

= (2.10)

(G - модуль сдвига) может быть получена тем же способом, что и формула (2.5).

В жидкостях и газах могут распространяться только продольные волны, так как в этих средах возможны упругие деформации сжатия и разрежения, но не бывает деформаций сдвига. При распространении упругих волн в газах, например, звука в воздухе, чередование сжатия и разрежения в локальных областях происходит настолько быстро, что эти процессы можно считать адиабатическими. Скорость распространения упругих волн в газе выражается формулой

= (2.11)

где p/Cv - показатель адиабаты, R - молярная газовая постоянная, T - абсолютная температура, M - молярная масса. В частности, скорость звука в воздухе вычисляется по формуле =20,1 и при температуре t=0оC равна 332 м/с.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]