Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Общая шпора по биохими.docx
Скачиваний:
59
Добавлен:
20.09.2019
Размер:
6.58 Mб
Скачать

Билет №21

1.Факторы транскрипции Факторами транскрипции называют белки или белковые комплексы, непосредственно не участвующие в каталитическом акте образования РНК, но необходимые для прохождения основных этапов транскрипции и ее регуляции. По функциональному признаку принято различать три класса факторов транскрипции.

К первому классу относятся основные факторы транскрипции, обеспечивающие нерегулируемый базальный уровень транскрипции и функционирующие в клетках всех типов.

Ко второму классу относятся факторы транскрипции, специфически взаимодействующие с определенными последовательностями ДНК, которые являются основными регуляторами транскрипции и обеспечивают тканеспецифическую экспрессию генов.

Третий класс факторов транскрипции (в том числе многочисленные TAF-белки) представлен белками - коактиваторами транскрипции, которые действуют согласованно с основными и тканеспецифическими факторами, обеспечивая более тонкую регуляцию транскрипции.

Транскрипционные факторы: Механизмы действия тф , связавающиеся с днк, могут влиять на транскрипцию генов через несколько механизмов:

1. В большинстве изученных к настоящему времени случаев ТФ стимулируют формирование комплекса преинициации на TATA- боксе - инициаторном элементе за счет взаимодействия их транс- активирующих доменов с компонентами базального транскрипционного комплекса (либо непосредственно, либо через коактиваторы/ медиаторы ).

2. Некоторые ТФ вызывают изменения структуры хроматина , делая его более доступным для РНК-полимераз .

3. Другие ТФ являются вспомогательными, создавая оптимальную конформацию ДНК для действия других транскрипционных факторов.

4. Известны ТФ, которые подавляют транскрипцию за счет непосредственного действия своих ингибирующих доменов , либо нарушая совместное функционирование комплекса транскрипционных факторов внутри регуляторной области гена ( промотора , энхансера ).

5. Наконец, имеются ТФ, которые сами не связываются с ДНК, а объединяются в более сложные комплексы посредством белок- белковых взаимодействий.

Обычно расматривают два уровния, на которых осуществляется регуляция транскрипции транскрипционными факторами:

Первый это сборка минимального транскрипционного комплекса , который является общим для множества генов и является субъектом для регуляции. Здесь факторы могут менять процесс сборки, упрочнять или ослаблять преинициационный комплекс PIC.

Второй уровень это сборка регуляторных комплексов , отдельных от PIC, которые взаимодействуют с минимальным комплексом и осуществляют его регуляцию, специфическую для гена или группы генов. Регуляция происходит путем изменения каталитической активности уже собранного траскрибирующего комплекса на стадиях инициации, элонгации или терминации.

Ковалентная модификация гистонов происходит по специфическим аминокислотным остаткам в N-треминальном хвосте. Многие из энзимов, участвующие в модификациях гистонов прежде всего действуют на гистоны H3 и H4. Эти модификации создают изменения в сродства гистонов к ДНК и др. ассоциирующим не-гистоновым белкам. Как результат эти модификации вносят вклад в конденсацию или реляксацию хроматиновых структур и те, в свою очередь предопределяют уровень экспрессии мРНК. Гистоновые модификации включают ацетилирование, фосфорилирование, метилирование, poly ADP ribosylation, sumoylation и ubiquitination. Помимо энзимов, которые вносят специфические модификации, имеются также энзимы, такие как фосфатазы и гистоновые деацетилазы, которые их ревертируют.

Ацетилирование гистонов коррелирует с транскрипционной активностью, тогда как деацетилирование гистонов ассоциирует с молчанием генов. Интересно, что специфические сайты из аминокислотных остатков N-терминальных хвостах гистонов могут быть модифицированы по разному, создавая таким образом разнообразные комбинации, которые могут иметь разный эффект на конденсацию хроматина. Эти находки привели к гипотезе существования точного 'histone code', который вместе с метилированием ДНК управляет рекрутированием и сборкой транскрипционного преиниационного комплекса и контролирует транскрипционную элонгацию и возможно купированный с транскрипцией процессинг мРНК.

Негистоновые белки составляют около 20% от всех белков хроматина. Негистоновые белки - это все белки хроматина, кроме гистонов, выделяющиеся с хроматином или хромосомами. Это сборная группа белков, отличающихся  друг от друга как по общим свойствам, так и по функциональной значимости. Около 80% из негистоновых белков относится к белкам ядерного матрикса, обнаруживаемых как в составе интерфазных ядер, так и митотических хромосом. Поскольку нет доказательств активной роли гистонов в процессе регуляции экспрессии гена у эукариотов, болем пристальное внимание было обращено на функцию кислых негистоновых белков хроматина. В пользу регулирующей роли этих белков в процессе активации генов свидетельствуют выраженный метаболический обмен, тканевая количественная и качественная специфичность, локализация на участках активной транскрипции ДНК и отсутствие на участках полной репрессии генов, возрастание их количества под влиянием факторов, индуцирующих функцию гена (например, под влиянием кортикостероидов). Негистоновые белки хроматина (НГБ) синтезируются в цитоплазме, а затем перемещаются в ядро НГБ связываются с ДНК неодинаково. Основным затруднением при исследовании функций НГБ является их значительное разнообразие, поскольку в состав НГБ входят ферменты и факторы транскрипции (главным образом РНК-полимераза), ферменты, необходимые для синтеза и распада белков, ферменты, видоизменяющие белки и нуклеиновые кислоты (метилирующие, ацетилирующне, фосфорилирующие), и даже сократительные белки в виде волокон актина.

2. Активность ферментов – способность в разной степени ускорять скорость реакции. Активность выражают в:

1) Международных единицах активности – (МЕ) количество фермента, катализирующего превращение 1 микромоля субстрата за 1 мин в стандартных условиях в расчете на 1 г ткани.

2)  Каталах (кат) – количество катализатора (фермента), способное превращать 1 моль субстрата за 1 с. . Отношение международной единицы (U) к каталу можно выразить следующим образом: 1 кат = 1 моль•с–1 = 60 моль•мин–1 = 60•106 мкмоль•мин–1 = 6•107 U, или: 1 U = 1 мкмоль•мин–1 = (1/60) мкмоль•с–1 = (1/60) мккат = 16,67 нкат. Таким образом, 1 U фермента соответствует 16,67 нкат.

3) Удельной активности – число единиц активности (любых из вышеперечисленных) в исследуемом образце к общей массе белка в этом образце. Отображает степень очистки фермента

4) Реже используют молярную активность – количество молекул субстрата превращенных одной молекулой фермента за минуту.

Активность зависит в первую очередь от температуры. Наибольшую активность тот или иной фермент проявляет при оптимальной температуре. Для Ф живого организма это значение находится в пределах +37,0 - +39,0 С, в зависимости от вида животного. При понижении температуры, замедляется броуновское движение, уменьшается скорость диффузии и, следовательно, замедляется процесс образования комплекса между ферментом и компонентами реакции (субстратами). В случае повышения температуры выше +40 - +50 С молекула фермента, которая является белком, подвергается процессу денатурации. При этом скорость химической реакции заметно падает. Активность ферментов  зависит также от рН среды. Для большинства из них существует определенное оптимальное значение рН, при котором их активность максимальна. Поскольку в клетке содержатся сотни ферментов и для каждого из них существуют свои пределы опт рН, то изменение рН это один из важных факторов регуляции ферментативной активности. Так, в результате одной химреакции при участии определенного фермента рН опт которого лежит в перделах 7.0 – 7.2 образуется продукт, который является кислотой. При этом значение рН смещается в область 5,5 – 6.0. Активность фермента резко снижается, скорость образования продукта  замедляется, но при этом активизируется другой фермент, для которого эти значения рН оптимальны и продукт первой реакции подвергается дальнейшему химическому превращению. (Еще пример про пепсин и трипсин)

3 ОКИСЛИТЕЛЬНОЕ ФОСФОРИЛИРОВАНИЕ, синтез АТФ из аденозиндифосфата и неорг. фосфата, осуществляющийся в живых клетках, благодаря энергии, выделяющейся при окислении орг. в-в в процессе клеточного дыхания. Окислительное фосфорилирование протекает в спе-циализир. субклеточных структурах-митохондриях.

Митохондрии окружены белково-фосфолипидной мембраной. Внутри митохондрий (в т. наз. матриксе) идет ряд метаболич. процессов распада пищ. в-в, поставляющих субстраты окисления для окислительного фосфорилирования. Наиб. важные из этих процессов -трикарбоновых кислот цикл и т. наз. -окисление жирных к-т. Интермедиаты этих процессов подвергаются дегидрированию (окислению) при участии ферментов дегидрогеназ; затем электроны передаются в дыхат. цепь митохондрий-ансамбль окислит.-восстановит. ферментов, встроенных во внутр. митохонд-риальную мембрану. Дыхат. цепь осуществляет многоступенчатый экзэргонич. перенос электронов (сопровождается уменьшением своб. энергии) от субстратов к кислороду, а высвобождающаяся энергия используется расположенным в той же мембране ферментом АТФ-синтетазой, для фосфорилирования АДФ до АТФ. В митохондриальной мембране перенос электронов в дыхат. цепи и фосфорилирование тесно сопряжены между собой. Так, напр., выключение фосфорилирования по исчерпании АДФ либо неорг. фосфата сопровождается торможением дыхания (эффект дыхат. контроля). Большое число повреждающих митохондриальную мембрану воздействий нарушает сопряжение между окислением и фосфорилированием, разрешая идти переносу электронов и в отсутствие синтеза АТФ (эффект разобщения).

Механизм окислительного фосфорилирования можно представить схемой: Перенос электронов (дыхание) А ~ В АТФ А ~ В-высокоэнергетич. интермедиат Предполагалось, что А ~ В - хим. соед. с макроэргич. связью, напр. фосфорилир. фермент дыхат. цепи (хим. гипотеза сопряжения), или напряженная конформация к.-л. белка, участвующего в окислительном фосфорилировании (конформац. гипотеза сопряжения). Однако эти гипотезы не получили эксперим. подтверждения. Наиб. признанием пользуется хемиосмотич. концепция сопряжения, предложенная в 1961 П. Митчеллом. Согласно этой теории, своб. энергия транспорта электронов в дыхат. цепи затрачивается на перенос из митохондрий через митохондриальную мембрану на ее наружную сторону ионов Н+. В результате на мембране возникает разность электрич. потенциалов и разность хим. активностей ионов Н+ (внутри митохондрий рН выше, чем снаружи). В сумме эти компоненты дают трансмембранную разность электрохим. потенциалов ионов водорода между матриксом митохондрий и внеш. водной фазой, разделенными мембраной. Энергия , выделяющаяся при движении протонов внутрь митохондрий по электрич. полю в сторону меньшей их концентрации, используется АТФ-синтетазой для синтеза АТФ. Т. обр., схему окислительного фосфорилирования, согласно этой концепции, можно представить в след. виде:Перенос электронов (дыхание) АТФ

Сопряжение окисления и фосфорилирования через позволяет объяснить, почему окислительное фосфорилирование, в отличие от гликолитич. ("субстратного") фосфорилирования, протекающего в р-ре, возможно лишь в замкнутых мембранных структурах, а также почему все воздействия, снижающие электрич. сопротивление и увеличивающие протонную проводимость мембраны, подавляют ("разобщают") окислительное фосфорилирование. Энергия , помимо синтеза АТФ, может непосредственно использоваться клеткой для др. целей - транспорта метаболитов, движения (у бактерий), восстановления нико-тинамидных коферментов и др.

В дыхат. цепи имеется неск. участков, к-рые характеризуются значит. перепадом окислит.-восстановит. потенциала и сопряжены с запасанием энергии (генерацией ). Таких участков, наз. пунктами или точками сопряжения, обычно три: НАДН: убихинон-редуктазное звено ( 0,35-0,4 В), убихинол: цитохром-c-редуктазное звено ( ~ ~ 0,25 В) и цитохром-с-оксидазный комплекс ( ~ 0,6 В)-пункты сопряжения 1, 2 и 3 соотв. Каждый из пунктов сопряжения дыхат. цепи м.б. выделен из мембраны в виде индивидуального ферментного комплекса, обладающего окислит.-восстановит. активностью. Такой комплекс, встроенный в фосфолипидную мембрану, способен функционировать как протонный насос.

АТФ-синтаза

АТФ-синтаза состоит из двух крупных фрагментов, обозначаемых символами F1 и F0. Первый из них (фактор сопряжения F1) обращён в сторону матрикса митохондрии и заметно выступает из мембраны. Он состоит из девяти субъединиц, представленных пятью типами белков. Полипептидные цепи трёх субъединиц α и стольких же субъединиц β уложены в похожие по строению белковые глобулы, которые вместе образуют гексамер (αβ)3. В центре этого гексамера находится субъединица γ, которая образована двумя протяжёнными полипептидными цепями. При этом нижняя часть субъединицы γ выступает в сторону мембранного комплекса F0. Также внутри гексамера находится минорная субъединица ε, связанная с γ. Последняя (девятая) субъединица обозначается символом δ и расположена на внешней стороне F1.

Мембранная часть АТФ-синтазы, называемая фактором сопряжения F0, представляет собой гидрофобный белковый комплекс, пронизывающий мембрану насквозь и имеющий внутри себя два полуканала для прохождения протонов водорода. Всего в состав комплекса F0 входит одна белковая субъединица типа а, две копии субъединицы b, а также от 9 до 12 копий мелкой субъединицы c. В молекуле АТФ-синтазы можно выделить две группы белковых субъединиц, которые могут быть уподоблены двум деталям мотора: ротору и статору. «Статор» неподвижен относительно мембраны и включает в себя шарообразный гексамер (αβ)3, находящуюся на его поверхности и субъединицу δ, а также субъединицы a и b мембранного комплекса F0. Подвижный относительно этой конструкции «ротор» состоит из субъединиц γ и ε, которые, заметно выступая из комплекса (αβ)3, соединяются с погружённым в мембрану кольцом из субъединиц c.

Способность синтезировать АТФ — свойство единого комплекса F0F1, сопряжённого с переносом протонов водорода через F0 к F1, в последнем из которых как раз и расположены каталитические центры, осуществляющие преобразование АДФ и фосфата в молекулу АТФ. Движущей же силой для работы АТФ-синтазы является протонный потенциал, создаваемый на внутренней мембране митохондрий в результате работы цепи электронного транспорта.

Каталитическая активность АТФ-синтазы непосредственно связана с вращением её «ротора», при котором поворот субъединицы γ вызывает одновременное изменение конформации всех трёх каталитических субъединиц β, что в конечном счёте и обеспечивает работу фермента. Непосредственная функция синтеза АТФ локализована на β-субъединицах сопрягающего комплекса F1. Самым первым актом в цепи событий, приводящих к образованию АТФ, является связывание АДФ и фосфата с активным центром свободной β-субъединицы, находящейся в состоянии 1. За счёт энергии внешнего источника (тока протонов) в комплексе F1 происходят конформационные изменения, в результате которых АДФ и фосфат становятся прочно связанными с каталитическим центром (состояние 2), где становится возможным образование ковалентной связи между ними, ведущей к образованию АТФ. На данной стадии АТФ-синтазы ферменту практически не требуется энергии, которая будет необходима на следующем этапе для освобождения прочно связанной молекулы АТФ из ферментативного центра. В результате энергозависимого структурного изменения комплекса F1 каталитическая β-субъединица, содержащая прочно связанную молекулу АТФ, перешла в состояние 3, в котором связь АТФ с каталитическим центром ослаблена. В результате этого молекула АТФ покидает фермент, а β-субъединица возвращается в исходное состояние 1, благодаря чему обеспечивается цикличность работы фермента.