Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
весть диплом.doc
Скачиваний:
60
Добавлен:
10.11.2019
Размер:
12.82 Mб
Скачать

4.5.3 Теоретические предпосылки и обоснование применения индукционной решетки в третьей условно выбранной четверти

Для улучшения качества получаемого концентрата на сепараторах типа ВСПБМ 90/100 в 3 условно принятой четверти используется неподвижная индукционная решетка (рисунок 4.16), при этом, в момент прохождения полюсов магнитной системы над ребрами рабочих элементов индукционной решетки, к ним притягиваются магнитные частицы. При изменении положения постоянных магнитов на флокулы воздействуют разнонаправленные магнитные силы, вызывающие их дальнейшее разрушение. Около следующего полюса магнитной системы материал перегруппировывается в новую флокулу более богатую магнетитом и процесс повторяется. При этом под воздействием воды, поступающей из брызгала, удаляются сростки магнетита с кварцем и оставшаяся часть пустой породы через разгрузочное устройство для вывода хвостов.

Рисунок 4.16 – Увеличенный разрез условно принятой 3(В) четверти,

где: 1 – корпус; 2 – немагнитный барабан; 3 – ярмо; 4 – магниты; 12 – индукционная решетка

4.6 Краткое описание технологической схемы обогащения железных руд Лебединского месторождения

На основании выше изложенных соображений и в ходе испытаний сепаратора ВСПБМ 32,5/20 с подачей в качестве питания концентрата I стадии ММС на рис. 4.17. представлена усовершенствованная схема обогащения железистых кварцитов Лебединского месторождения.

Полученные результаты показали возможность выделять сепаратором ВСПБМ-90/100 в конечный продукт раскрытых зерен магнетита уже после первой стадии ММС, что приведет к повышению технико-экономических показателей ОФ в целом. Как уже отмечалось, при ММС с применением серийных сепараторах типа ПБМ в конечный продукт можно выделить только немагнитные зерна пустой породы, а зерна магнетита, богатые и бедные сростки переходит в магнитную фракцию. К тому же в неё переходит и часть немагнитных зерен пустой породы, захваченных за счет магнитной флокуляции сильномагнитных зерен и физико-механической адгезии. Из этого следует, что постадийный прирост содержания магнетита в концентратах невелик и происходит в процессе раскрытия сростков магнетита при измельчении за счет удаления кварца и очень бедных сростков, причем весь магнетит переизмельчается и механически транспортируется из стадии в стадию. Высокоселективные сепараторы, разработанные в НТЦ МГГУ после каждой стадии измельчения способны выделить часть богатого магнетитового концентрата и направить его, по крайней мере, минуя одну или несколько стадий в конец технологической схемы.

Технологическая схема обогащения выбрана и обоснована с учетом всех факторов, влияющих на технологию переработки железных руд месторождения. Схема включает:

-одну стадию крупного дробления в конусных дробилках;

-одну стадию самоизмельчения с классификацией на спиральных классификаторах;

-две стадии рудногалечного измельчения с классификацией на спиральных классификаторах;

-пять стадий мокрой магнитной сепарации;

-две операции классификации в гидроциклонах;

-операции обесшламливания, сгущения хвостов и концентрата, фильтрования концентрата.

Данная технологическая схема с правильным подбором и компоновкой оборудования позволит получать железосодержащий концентрат с содержанием до 69% Fe в количестве 2 836 625 тонн в год.

Выделение магнетита в голове технологической схемы и постадийно требует от ВСММС максимальной эффективности сепарации, причем это сделать легче на более крупных зернах, т.е. после первой стадии измельчения. Выделение конечного концентрата после первого приема ММС – это, безусловно, лучший вариант технологического решения для внедрения технологии стадиального выделения высококачественных магнетитовых концентратов по мере их раскрытия для сокращения технологической схемы. Конечно, при этом возникают также и некоторые технологические препятствия, например, нежелательное загрубение крупности конечного концентрата перед окомкованием и другие решаемые проблемы. Однако, все это перекрывается положительными технологическими и экономическими преимуществами новой технологии: повышение извлечения за счет большего коэффициента захвата, увеличение экономии материальных и энергетических ресурсов, уменьшение обводненности продуктов и водооборота.

Однако, учитывая минералогический состав и раскрытие исходного продукта, необходимо искать оптимального режима работы ВСПБМ-90/100, повышать интенсивность силового режима сепарации, что бы снизить выход концентрата вдвое и поднять его качество до уровня конечного концентрата.