Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Гидравлика учебник.doc
Скачиваний:
297
Добавлен:
13.11.2019
Размер:
4.83 Mб
Скачать

§ 8.4. Истечение жидкости при переменном напоре

Истечение при переменном напоре является, по сути дела, неустановившимся движением жидкости. Мы ограничимся лишь тем случаем, когда такое движение можно приближенно считать установившимся, то есть пренебречь силами инерции. Рассмотрим простейший случай опорожнения резервуара, имеющего площадь живого сечения  (рис.8.5).

Пусть начальный напор есть H1 и конечный H2. Расчет опорожнения заключается в определении времени этого процесса. Количество жидкости, вытекающее за время dt, равно

Рис. 8.5

.

С другой стороны,

,

где знак минус взят потому, что dz - отрицательно, а dV принимаем положительным.

Тогда

.

Отсюда

.

Интегрируя, получим

.

Время полного опорожнения получим, положив H2 = 0.

.

Или

,

где V - объем резервуара; Q - расход жидкости при начальном напоре H1.

То есть время опорожнения сосуда при переменном напоре в 2 раза больше того времени, которое требуется для вытекания жидкости при начальном напоре H1, в количестве, равном первичному объему V1.

§ 8.5. Истечение через насадки

Насадком называется короткий патрубок, присоединенный к отверстию в тонкой стенке. Длина патрубка , где d диаметр отверстия.

Насадки делятся на 3 основных типа.

1. Цилиндрические (рис. 8.6, 8.7).

2. Конические (рис. 8.8, 8.9).

3. Коноидальные (рис. 8.10).

1. Цилиндрические насадки делятся на внешние (рис. 8.6) и внутренние (рис. 8.7).

Рис. 8.6

Рис. 8.7

При движении жидкости внутри насадка образуется сжатое сечение с-с, в области которого наблюдается вакуум. Образование вакуума объясняется тем, что скорость в сжатом сечении больше, чем скорость в месте выхода струи из насадка. Как показывает опыт, при применении цилиндрических насадок пропускная способность увеличивается по сравнению с тонким отверстием того же диаметра. Увеличение пропускной способности и является основным назначением этих насадок.

2. Конические насадки бывают 2-х типов - расходящиеся (рис. 8.8) и сходящиеся (рис. 8.9).

Рис. 8.8

Рис. 8.9

В конических расходящихся насадках также создается вакуум. При большом угле конусности возможен обрыв потока от стенок и насадок будет работать как обычное отверстие. Конические расходящиеся насадки имеют самые большие потери энергии. Отличительными особенностями расходящихся насадок являются: значительный вакуум, большая пропускная способность, малые скорости выхода. Они применяются там, где требуется значительный вакуум, например в инжекторах, а также там, где требуется малая скорость, например в дождевальных аппаратах.

Основным назначением конических сходящихся насадков является увеличение скорости выхода потока с целью создания большой кинетической энергии в струе. Конические сходящиеся насадки применяются в качестве сопел гидромониторов и активных гидротурбин, наконечников пожарных брандспойтов и в других устройствах.

3

Рис. 8.10

. Коноидальные насадки представляют собой усовершенствованные конически сходящиеся насадки (рис. 8.10). Они выполняются по форме струи, выходящей из отверстия и поэтому потери энергии в них минимальные.

Коэффициент расхода коноидального насадка является наивысшим.

Гидравлический расчет насадков ведется по тем же формулам, что для отверстия в тонкой стенке

,

где - и . Только вместо коэффициента местных потерь ξ следует поставить в формулу для  суммарный коэффициент сопротивления

,

где l - длина, d - диаметр насадка.