Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Остроумова Т.А. - Химия и физика молока - 2004.doc
Скачиваний:
574
Добавлен:
02.04.2015
Размер:
1.23 Mб
Скачать

6.7. Биосинтез липидов

По общепризнанному мнению, из всех составных частей молока больше всего известно в настоящее время о биосинтезе молочного жира. Достоверно известно, что молочный жир синтезируется путем преобразования в эпителиальных клетках альвеол молекул триацилглицеринов, фосфолипидов, эфиров, холестерина, доставляемых кровью, а также в результате этерификации свободными жирными кислотами, синтезированными тканями железы, α-глицерофосфорной кислоты.

Синтез молочного жира осуществляется в две стадии: образование жирных кислот и глицерина, и синтез триацилглицеринов.

В молочную железу в составе липидов крови поступает около половины всех жирных кислот, участвующих в синтезе молочного жира. Причем, из липидов крови образуются главным образом высокомолекулярные жирные кислоты (от С18и выше, частично С16). Другая часть жирных кислот (от С4до С14, частично С16) синтезируется в тканях молочной железы из низкомолекулярных предшественников: летучих жирных кислот (в основном – 92-95% из уксусной и частично из масляной).

Высокомолекулярные жирные кислоты, образовавшиеся при гидролизе триацилглицеринов крови, поглощаются железой, а затем подвергаются превращениям в самой железе. Так, например, установлено, что молочная железа больше поглощает стеариновой кислоты (С18:0), чем олеиновой (С18:1) в 3-4 раза, однако молочный жир содержит больше олеиновой кислоты. Объясняется это превращениями насыщенных кислот: стеариновой – в олеиновую, а пальмитиновой (С16:0) – пальмитолеиновую (С16:1) под действием специфической оксигеназы, в присутствии кислорода, при участии кофермента НАДФ (никотинамидадениндинуклеотидфосфат – кофермент оксигеназ, катализирующих реакции дегидрирования, переносчик атомов водорода).

Глицерин, входящий в структуру жира (триацилглицеринов), поступает в молочную железу в составе липидов крови, или синтезируется из ряда органических веществ, в том числе аминокислот, и главным образом, из продукта гидролиза глюкозы – диоксиацетонфосфата. Глицерин, а также и жирные кислоты, участвующие в синтезе молекул жира, предварительно должны быть активированы, без этого они не будут реагировать между собой. Активирование глицерина заключается в его фосфорилировании под действием фермента глицеролкиназы, при участии АТФ. Глицеролкиназа катализирует перенос фосфатных групп от АТФ к глицерину.

Н2С – ОН Н2С – ОН

НС – ОН + АТФглицеролкиназаНС – ОН + АДФ

ОН

Н2С – ОН Н2С – О – Р = О

ОН

Глицеро-3-фосфат

(активированный глицерин)

При условии синтеза из диоксиацетонфосфата (образуется при распаде углеводов) глицерин образуется уже в активированной форме путем дигидрирования диоксиацетонфосфата.

Н2С – ОН Н2С – ОН

НАД.Н2 НАД`

С = О глицерофосфат-НС – ОН

дегидрогеназа ОН ОН

Н2С – О – Р = О Н2С – О – Р = О

ОН ОН

диоксиацетонфосфат глицеро-3-фосфат

(НАД – никотинамидадениндинуклеотид – кофермент дегидрогеназ, переносчик атомов водорода).

Синтез жирных кислот.Предшественниками жирных кислот служат ацетат (в основном) и β-оксибитурат, содержащиеся в большом количестве в крови жвачных.

На первом этапе синтеза жирных кислот исходными веществами являются активированная уксусная кислота (в форме ацетил-КоА) и двуокись углерода СО2, реагирующие между собой с использованием энергии АТФ.

СН3– С ~SkoA- активированная уксусная кислота

О (ацетил-КоА)

(Кофермент-А или КоА – выполняет функцию переносчика ацетильных групп, как АТФ является источником и переносчиком фосфатных групп. Активным началом сложной по своей структуре молекулы кофермента ацилирования служит группа – SH, поэтому его обычно обозначают (КоASH). Итак, на первом этапе происходит карбоксилирование ацетила-КоА в присутствии СО2и образование малонила-КоА.

CH3– С ~SkoA+CO2+ АТФ +H2Oацетил-КоА-

карбоксилаза

О

→НООС – СН2– С ~SkoA+ АДФ + Н3РО4

О

Малонил-SkoA

Далее синтез идет следующим образом: ацетильная и малонильная группы переносятся на ацилпереносящий белок (АПБ), находящийся в центре ферментного комплекса. АПБ служит своего рода якорем, к которому в ходе реакций присоединяются ацильные группы ацетил-КоА и малонил-КоА при участии соответствующих ферментов, имеющих SН-группы.

Ацетил ~ SКoA+ АПБ –SH↔ Ацетил ~SАПБ + КоASH

Малонил ~ SКoA+ АПБ –SH↔ Малонил ~SАПБ + КоASH

В дальнейших реакциях синтеза жирных кислот участвуют ацетил ~ SАПБ и малонил ~SАПБ.

CH2–C~SАПБ +HOOC–CH2–C~SАПБ →

O O

→CH3 – C – CH2 – C ~ SАПБ + АПБ – SH + CO2

OO

ацетоацетил ~ SАПБ

Реакция идет с выделением большого количества энергии и сдвинута сильно в направлении синтеза, то есть декарбоксилирование малонильного остатка обеспечивает сильный термодинамический толчок в нпаравлении синтеза жирных кислот. Ацетоацетил-АПБ восстанавливается затем НАДФ.Н2с образованием β-оксибутирила ~SАПБ.

Под действием дегидратазы от β-оксибутирила ~SАПБ отщепляется молекула воды и образуется кротонил ~SАПБ, который восстанавливается при участии НАДФ.Н2с образованием бутирила ~SАПБ.

СH3–C–CH2–C~SАПБ НАДФ.Н2 НАДФ`

║ ║

О О

Ацетоацетил ~SАПБ

→ СН3– СНОН – СН2– С ~SАПБ - Н2О

║дегидратаза

О

β оксибутирилил ~SАПБ

→СН3– СН = СН – С ~SАПБ НАДФ.Н2 НАДФ`

О

Кротонил ~SАПБ

СН3– СН2– СН2– С ~SАПБ

О

Бутирил~SАПБ

Бутирил ~SАПБ под действием фермента деацилазы превращается в масляную кислоту или снова вступает в аналогичную цепь реакций, начинающуюся с конденсации с малонилом ~SАПБ. Таким образом происходит удлинение углеродной цепи на два углеродных атома: С6, С8, С10, С12и т.д. до С16(пальмитиновой кислоты). Конечным продуктом синтеза является пальмитил ~SАПБ. В конце цикла пальмитиновая кислота отщепляется от АПБ.

Суммарное уравнение синтеза жирных кислот:

8Ацетил – КоА + 14НАДФ.Н + 14Н++ 7АТФ + Н2О →

→С16:0+ 8КоА + 14НАДФ++ 7АДФ + 7Ф

пальмитиновая кислота

Молекула пальмитиновой кислоты может удлиняться при участии ферментных систем путем последовательного добавления ацетил-КоА (на некоторых стадиях в качестве восстановителя участвует НАДФ.Н2).

Мононенасыщенные жирные кислоты образуются из насыщенных в присутствии О2, специфической оксигеназы и восстанавливающего агента НАДФ.Н2: из пальмитиновой (С16:0) – пальмитолеиновая (С16:1), из стеариновой (С18:0) – олеиновая (С18:1).

Полиненасыщенные жирные кислоты являются производными пальмитиновой и олеиновой кислот. Удлинение цепи происходит аналогичным образом, как при синтезе насыщенных кислот, а введение двойных связей катализируется оксигеназами в присутствии НАДФ.Н2(так же, как при синтезе пальмитолеиновой и олеиновой кислот). Однако, в организме млекопитающих не синтезируются полиненасыщенные кислоты – линолевая (С18:2) , линоленовая (С18:3), а арахидоновая (С20:4) может синтезироваться из линоленовой. Поэтому эти кислоты называют незаменимыми жирными кислотами, которые должны поступать в организм с растительными жирами. В жире молока из полиненасыщенных жирных кислот в основном содержатся линолевая, линоленовая и арахидоновая.

Биосинтез триацилглицеринов.Для синтеза триацилглицеринов используется глицеро-3-фосфат (активированный глицерин) и КоА – производные жирных кислот – активированные жирные кислоты.

Первая стадия образования триацилглицеринов заключается в ацилировании гидроксильных групп глицерофосфата двумя молекулами КоА – производного жирной кислоты с образованием фосфатидной кислоты, которая на последующей стадии под действием фосфатазы подвергается дефосфорилированию с образованием диацилглицерина, а затем триацилглицерина.

О

НС2- ОН +2R–C~SКoAH2C–O–COR

- 2 KoASH-ФН

НС – ОН НС – О – СОRфосфатаза

ОН ОН

Н2С – О – Р = О Н2С – О – Р = О

ОН ОН

глицеро-3-фосфат фосфатидная кислота

О

Н2С – О –CORН2С – О –COR

+ R – C ~SКoA

HC – O – COR HC – O – COR

- KoASH

H2C – OH H2C – O – COR

диацилглицерин триацилглицерин

Кроме этого, синтез триацилглицеринов может идти путем непосредственного ацилирования моно- или диацилглицеринов крови:

Моноацилглицерин + R–CO~SКoA↔ Диацилглицерин +KoASH