Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Остроумова Т.А. - Химия и физика молока - 2004.doc
Скачиваний:
574
Добавлен:
02.04.2015
Размер:
1.23 Mб
Скачать

Контрольные вопросы

  1. От чего зависит плотность молока?

  2. Что характеризует показатель «титруемая кислотность» молока и в чем заключается механизм его определения?

  3. Что понимают под активной кислотностью молока и в чем заключаются различия в оценке молока по этому показателю и титруемой кислотностью?

  4. Какие буферные системы содержит молоко и в чем заключается их действие?

  5. Что понимают под буферной емкостью молока, от чего она зависит?

  6. Какое значение имеет контроль активной кислотности (рН) молока в производственных условиях?

  7. От чего зависит окислительно-восстановительный потенциал молока и как он изменяется в процессе хранения и обработки молока?

  8. От чего зависит вязкость молока?

  9. Чем обусловлено поверхностное натяжение молока и какие факторы на него влияют?

10.Чем обусловлено осмотическое давление молока?

11.Какие факторы влияют на электропроводность молока?

12.Что означают теплофизические характеристики молока и в каких случаях их используют?

13.Как характеризуются органолептические свойства молока, чем они обусловлены?

14.Что понимают под технологическими свойствами молока?

15.Что характеризует показатель термоустойчивость молока?

16.Какие факторы влияют на сычужную свертываемость молока?

Тема 12. Физико-химические изменения молока при его хранении и обработке

При хранении, транспортировке и предварительной обработке молока происходят структурные изменения его составных компонентов и как следствие, изменения физико-химических, органолептических и технологических свойств.

В процессе хранения молока в условиях низких температур или в замороженном состоянии, при механической и тепловой обработке его меняется состав оболочек жировых шариков, нарушается их целостность, образуются агрегаты, скопление шариков и т.д. В результате частичной дестабилизации жировой эмульсии появляется деэмульгированный (свободный) жир, что способствует увеличению потерь жира при технологической переработке молока и снижению стойкости молочных продуктов при хранении.

В процессе хранения молока в условиях низких температур возможна миграция β-казеина в плазму без видимого нарушения мицелл и его последующий гидролиз под действием плазмина молока с образованием γ-казеинов и протеозо-пептонов. Механические и тепловые воздействия могут вызвать нарушение структуры казеина и денатурацию сывороточных белков.

Кроме этого, пастеризация и стерилизация способствует изменению солевого равновесия молока, образованию соединений, влияющих на вкус, запах, цвет и биологическую ценность молочных продуктов.

Под воздействием этих факторов происходят изменения свойств ферментов (их активизация или, наоборот, инактивирование), разрушение части витаминов и некоторые другие физико-химические изменения молока.

Все эти изменения связаны с энергетическими воздействиями, которые обусловливают возможность разрыва различных типов связей в составных частях молока. Разрыв различных межмолекулярных и внутримолекулярных связей в результате воздействия механической или тепловой энергии может привести к следующим последствиям. Например, под воздействием механической энергии нарушаются гидрофобные связи, следствием чего является десорбция белковых компонентов с оболочек жировых шариков и дезагрегация казеиновых мицелл.

Под воздействием тепловой энергии происходит разрыв водородных и ковалентных связей, в результате – необратимая денатурация белков, образование продуктов распада с интенсивным вкусом и запахом, разрушение витаминов.

Под воздействием энергии излучения (ультрафиолетовый свет) происходит нарушение ковалентных связей и начинается самоокисление молочного жира.

Возможность разрыва связей, а следовательно, изменения составных частей молока зависят от продолжительности энергетического воздействия, от присутствия каталитически действующих веществ, от величины рН среды, а также от величины окислительно-восстановительного потенциала.

12.1. Изменения при хранении в условиях низких

температур и транспортировке

Сразу после выдаивания молоко охлаждают, чтобы затормозить жизнедеятельность микроорганизмов. Охлаждение осуществляют до температуры 6…10оС – нормальное охлаждение, до 2…6оС – глубокое охлаждение, в отдельных случаях – от минус 12 до минус 25оС – замораживание.

При охлаждении значительным изменениям подвержены компоненты молока с гидрофобными связями, которые при охлаждении ослабляются (прежде всего белки и жир).

Белки. С понижением температуры прочность гидрофобных связей уменьшается. Часть мицеллярного казеина переходит в растворимую форму, что объясняется большим количеством гидрофобных групп у β-казеина. При длительном хранении (двое суток) охлажденного молока может произойти гидролиз β-казеина под действием нативной протеазы – плазмина с образованием γ-казеинов и протеозо-пептонной фракции, что отрицательно сказывается на способности молока свертываться под действием сычужного фермента, синеретических свойствах белковых сгустков и термоустойчивости молока (технологические свойства молока). Кроме этого, при длительном хранении охлажденного молока возможен гидролиз белков под действием бактериальных протеаз, которые в большей степени атакуют κ-казеин и могут способствовать накоплению горьких пептидов и других нежелательных продуктов, придающих молоку посторонние привкусы. При хранении замороженного молока происходит сначала частичная дезагрегация мицелл казеина, а затем мицеллы соединяются в плотные частицы, которые осаждаются при оттаивании молока. За счет этого также ухудшаются технологические свойства молока.

Липиды. Охлаждение молока сопровождается частичным изменением агрегатного состояния молочного жира: часть триацилглицеринов в глицеридном ядре жирового шарика переходит в кристаллическое состояние. Происходят изменения в оболочке жировых шариков за счет перехода части оболочечного вещества в плазму, как следствие, потери отрицательного заряда и ослабления гидратации. Оболочка при этом приобретает хрупкость, несколько истончается и при дополнительных воздействиях (перекачивание, перемешивание, транспортирование) может стать проницаемой для жидкого жира. В этом случае уже происходит дестабилизация жировой эмульсии (см.тему 10, п. 10.3.2. «Факторы нарушения устойчивости жировой эмульсии»). Следствием таких изменений может явиться наличие деэмульгированного жира и его гидролиз под действием нативных липаз или липаз психротрофных микроорганизмов. Нативные липазы могут вызывать два вида липолиза: спонтанный и индуцированный.

Спонтанный липолиз характерен для молока с повышенным содержанием липаз (стародойного, от больных животных). В данном случае плазменная липаза связывается с оболочками жировых шариков и вызывает гидролиз жира. Индуцированный липолиз возникает при нарушении оболочек жировых шариков вследствие механических воздействий (перемешивания, перекачивания, транспортирования), которые приводят к активированию липазы. Следствием липолиза является накопление свободных жирных кислот (СЖК), особенно кислот от С4 до С12, которые обусловливают появление порока вкуса – прогорклый.

При замораживании молока и последующем его оттаивании также происходит деэмульгирование жира. Это обусловлено тем, что коэффициент теплого расширения жира более чем в 2 раза превышает коэффициент теплового расширения льда. Увеличение объема жира при повышении температуры больше, чем льда, поэтому на поверхности раздела фаз лед – жир возникают напряжения, вызывающие повреждение оболочек жировых шариков. Следствием появления деэмульгированного жира является накопление продуктов его гидролиза и появление прогорклого вкуса.

Соли кальция и фосфора. При хранении, охлаждении молока возможно перераспределение форм солей. При хранении молока даже в условиях низких температур происходит накопление молочной кислоты (некоторое повышение титруемой кислотности), что приводит к снижению отрицательного заряда белковых частиц и нарушению баланса между солями кальция. Часть солей кальция из коллоидной формы переходит в ионно-молекулярное состояние. Увеличение содержания ионизированного кальция обусловливает возможность агрегации частиц казеинаткальцийфосфатного комплекса.

Ферменты. При охлаждении молока происходит десорбция ферментов с оболочек жировых шариков и из мицелл казеина в плазму молока в результате ослабления гидрофобных связей (липаза, протеиназа, щелочная фосфатаза, ксантиноксидаза и др.). В результате механических воздействий, связанных с транспортированием молока повышается активность ферментов следствием чего являются изменения жировой и белковой фаз молока (их гидролиз) и отклонения в технологических параметрах при переработке молока: снижение степени обезжиривания молока при сепарировании; потери жира при производстве масла, сыра, увеличение продолжительности сычужного свертывания молока, увеличение продолжительности сквашивания молока и сливок.

При замораживании молока и последующем оттаивании происходит активация плазменной липазы, что связано также со степенью деформации оболочек жировых шариков. При этих условиях усиливаются и процессы липолиза.

При замораживании молока повышается активность некоторых оксидаз, следствием чего является появление пороков вкуса.

Витамины. При хранении охлажденного молока и его транспортировании происходят значительные потери витамина С (от 18 до 70%) в зависимости от температуры охлаждения и продолжительности хранения. Содержание других витаминов при хранении охлажденного молока в течение суток изменяется незначительно. При увеличении продолжительности хранения охлажденного молока происходит некоторое снижение содержания витаминов А, Е, группы В.

12.2. Изменения при механических воздействиях

Механические воздействия при обработке молока: центробежная очистка, бактофугирование, перекачивание, перемешивание и гомогенизация в основном сопровождаются изменениями степени дисперсности и стабильности жировой фазы, а также дезагрегацией казеиновых мицелл. Из физико-химических свойств изменяется только вязкость молока (повышается при гомогенизации).

Мембранная обработка молока оказывает влияние на структуру и свойства белковых фракций.

Липиды. Центробежная очистка и бактофугирование не влияют на изменение жировой фазы (при соблюдении режимов). Однако, при нарушении режимов работы, например насосов, подающих молоко на центробежную очистку, возможно пенообразование, десорбция адсорбированных оболочкой жировых шариков ферментов и повышение их активности. Предварительное перекачивание, перемешивание, пастеризация, охлаждение и замораживание молока отрицательно влияют на процесс сепарирования молока. При таких условиях сепарирования возникает возможность дробления жировых шариков, снижение эффективности сепарирования.

Гомогенизация молока и сливок предназначена для увеличения степени дисперсности жировой фазы. С увеличением степени дисперсности происходит увеличение общей поверхности жировых шариков, изменение состава их оболочек. Нативных оболочечных компонентов недостаточно для того, чтобы покрыть возросшую поверхность шариков жира. Поэтому дефицит оболочечного белка компенсируется за счет адсорбирования плазменных белков – казеина и сывороточных. Из-за увеличения общей поверхности жировых шариков повышается возможность гидролитического воздействия липаз на жир.

Белки, ферменты, соли. Центробежная очистка практически не влияет на эти компоненты. При гомогенизации изменяется структура и свойства белков: уменьшается размер мицелл казеина, часть их распадается на субмицеллы, которые адсорбируются на поверхности жировых шариков. Повышение степени дисперсности белковой фазы, а следовательно увеличение общей поверхности обусловливает увеличение зарядов на поверхности и усиление гидратационных свойств. При таких условиях меняются структурно-механические и синеретические свойства сычужных и кислотных сгустков, замедляется их синерезис.

В процессе гомогенизации меняется соотношение форм солей: увеличивается количество кальция в ионно-молекулярном состоянии, а часть коллоидного фосфата и цитрата кальция адсорбируется поверхностью жировых шариков.

После гомогенизации молока наблюдается активизация ферментов – ксантиноксидазы, липазы и др., сопровождающаяся образованием свободных жирных кислот, прогорканием молока и повышением титруемой кислотности.

Мембранная обработка молока или сыворотки в производстве сывороточных белковых концентратов, белковых молочных продуктов (сыров, творога, паст), в том числе детских продуктов оказывает влияние на структуру казеина и сывороточных белков. Структурные изменения белковой фазы зависят от продолжительности мембранной обработки, особенностей технологического процесса, а также от степени концентрирования. При ультрафильтрационной обработке молока происходит частичная денатурация сывороточных белков (около 20%) и их ассоциация с казеином. При диафильтрации (повторной ультрафильтрации разбавленного водой белкового УФ-концентрата) степень денатурации сывороточных белков возрастает в 4…5 раз. Предположительно процесс денатурации белков при ультрафильтрации происходит на границе раздела фаз воздух – жидкость. Повышение степени денатурации белков при диафильтрации является следствием удаления из концентрата лактозы (при разбавлении водой), обладающей защитными свойствами по отношению к белкам.

Концентрирование обезжиренного молока в 2…3 раза с помощью его ультрафильтрационной обработки в производстве сычужных сыров и творога незначительно влияет на структурные изменения белковой фазы. Однако, при повышении степени концентрирования (в 5 и более раз) эти изменения отрицательно влияют на структурно-механические и синеретические свойства образующихся сгустков и приводят к потерям белка с сывороткой.

12.3. Изменения при тепловой обработке

Тепловую обработку молока: пастеризацию, стерилизацию, ультравысокотемпературную обработку (УВТ-обработку) проводят с целью обеспечения соответствия вырабатываемых продуктов санитарно-гигиеническим требованиям и повышения стойкости их при хранении. При тепловой обработке происходят изменения составных компонентов молока, его физико-химических, органолептических и технологических свойств. Степень этих изменений зависит от температуры и продолжительности ее воздействия на молоко. По этой причине выбор режимов тепловой обработки определяется в зависимости от последующего использования молока на те или иные группы молочных продуктов.

Последствия влияния тепловой обработки на составные части молока не всегда желательны. Например, в производстве сычужных сыров денатурация сывороточных белков и снижение содержания ионизированного кальция в молоке после тепловой обработки отрицательно влияют на процессы сычужного свертывания, обработки сгустка и качество готового продукта. В производстве кисломолочных напитков, напротив, денатурация сывороточных белков, их последующее взаимодействие с мицеллами казеина способствует повышению гидратационных свойств получаемых сгустков и предотвращает синерезис.

Конечный эффект тепловой обработки при одновременном предотвращении технологически обусловленного отрицательного влияния на составные части молока зависит от резистентности микроорганизмов, устойчивости дисперсных фаз молока, а также от интенсивности нагревания. Кроме этого, на выжываемость микроорганизмов и стабильность дисперсных фаз молока оказывают влияние величина активной кислотности (рН), окислительно-восстановительный потенциал и срок хранения молока.

При нагревании содержание энергии в молоке повышается. Тепловое движение частиц и колебания атомов в молекулах усиливаются. При определенной температуре поглощенная энергия достигает величины энергии активации для разрыва или образования связей. Вследствие этого при нагревании все составные части молока с незначительной энергией связи претерпевают изменения. Например, сывороточные белки, ферменты с высоким содержанием водородных и легко расщепляемых ковалентных связей особенно подвержены изменениям при нагревании. Достаточно сильные изменения при нагревании претерпевает также часть витаминов. Казеины и истинно растворимые компоненты изменяются незначительно.

Сывороточные белки. В зависимости от интенсивности и продолжительности нагревания происходит частичная или полная денатурация белков. Вследствие разрыва водородных и ковалентных связей с незначительной энергией происходят конформационные изменения – нарушение их вторичной и третичной структуры, в результате чего компактно свернутая молекула превращается в беспорядочный клубок. Развертывание α-спиральных участков молекулы приводит к высвобождению функциональных групп: сульфгидрильных (-SH), гидроксильных (-ОН), аминогрупп (-NH2) и др. Вследствие реакционной способности этих групп денатурированные белки могут взаимодействовать между собой и с казеином. Денатурированный β-лактоглобулин образует комплексы с α-лактальбумином, которые взаимодействуют с κ-казеином. Образование комплексов сывороточных белков с κ-казеином резко меняет поверхностные свойства казеиновых мицелл: усиливает гидратационные свойства, ухудшает способность свертываться под действием сычужного фермента, снижает термоустойчивость казеина.

С высвобождением сульфгидрильных групп при нагревании молока связано появление вкуса кипяченного молока, усиление антиокислительных свойств и понижение окислительно-восстано-вительного потенциала. Основным источником SH-групп является β-лактоглобулин. Денатурация сывороточных белков сопровождается частичной или полной потерей коллоидной растворимости.

Чувствительность к нагреванию отдельных фракций сывороточных белков различна. Наименее устойчивыми к нагреванию являются иммунные глобулины, затем альбумины сыворотки сроки, более устойчивы β-лактоглобулин и α-лактальбумин. Протеозо-пептоны – самая термостабильная фракция сывороточных белков. Особенности денатурации основных сывороточных белков β-лактоглобулина и α-лактальбумина обсуждалось при изучении темы 5 «Белки молока» (раздел 5.4. «Физико-химические свойства белков»).

Особую значимость для практической обработки и переработки молока имеют следующие изменения, связанные с тепловой денатурацией сывороточных белков:

- снижение окислительно-восстановительного потенциала при одновременном усилении антиокислительных свойств;

- возникновение привкуса кипячения;

- снижение способности к свертыванию под действием сычужного фермента и прочности сгустка, что отрицательно сказывается на отделении сыворотки и последующем процессе созревания сыра;

- усиление гидратационных свойств кислотных сгустков в производстве кисломолочных диетических напитков.

Казеинаткальцийфосфатный комплекс (ККФК). В отличие от других глобулярных белков является термоустойчивым белком. Его коагуляция наступает при выдержке молока, нагретого до 120…130оС, в течение от 2 до 88 минут. Тепловая стабильность казеина зависит от концентрации ионов кальция в молоке, величины рН и денатурированной части сывороточных белков.

Однако, при тепловой обработке при высоких температурах (выше 100оС) казеинаткальцийфасфатный комплекс претерпевает ряд физико-химических изменений. Вследствие гидролиза фосфатноэфирных связей происходит его дефосфорилирование с удалением из αS- и β-казеинов части органического фосфора, в результате чего снижается суммарный отрицательный заряд казеиновых мицелл. После дефосфорилирования ухудшается способность казеина связывать кальций, часть его уходит из казеинатов кальция, наступает дестабилизация мицелл и снижается термоустойчивость.

При нагревании выше 110 оС в результате гидролиза пептидных связей в κ-казеине от него отщепляется гликомакропептид, выполняющий роль защитного коллоида мицелл, что может вызвать тепловую коагуляцию белков. Кроме этого на поверхности мицелл осаждается комплекс денатурированных β-лактоглобулина и α-лактальбумина, коллоидный фосфат кальция. В результате замедляется сычужное свертывание и изменяются структурно-механические и синеретические свойства сгустков (кислотного и сычужного) – усиливается степень гидратации.

Термоустойчивость казеина зависит от солевого равновесия: при повышении содержания ионов кальция в плазме молока происходит их присоединение к ККФК, в результате чего уменьшается отрицательный заряд мицелл казеина, они агрегируются в крупные агрегаты и коагулируют при нагревании.

Термоустойчивость зависит и от размеров мицелл казеина: чем они мельче, тем выше термоустойчивость, так как более мелкие мицеллы содержат больше κ-казеина, обладающего высоким отрицательным зарядом и сильными гидрофильными свойствами.

Термоустойчивость ККФК зависит от величины рН (накопление молочной кислоты, понижение рН, переход коллоидного кальция в ионно-молекулярное состояние обусловливают коагуляцию казеина).

Лактоза. При высокотемпературной пастеризации и особенно при стерилизации происходит частичная изомеризация лактозы в лактулозу и взаимодействие с аминогруппами белков.

Изомеризация лактозы в лактулозу происходит путем перемещения в глюкозном остатке водорода от второго углеродного атома к первому (перегруппировка Амадори), в результате чего лактоза переходит в лактулозу, состоящую из двух моносахаров: глюкозы и фруктозы. Эта реакция интенсивно протекает в щелочной среде и положена в основу получения лактулозы из водных растворов лактозы (см.тему 7, раздел 7.3 «Химические свойства лактозы»). Содержание лактулозы незначительно в пастеризованном молоке, но при УВТ-обработке и стерилизации оно заметно повышается. Взаимодействие лактозы с аминогруппами белков происходит в процессе длительной высокотемпературной обработки молока. Конечным продуктом взаимодействия являются темноокрашенные соединения – меланоидины. Образование этих соединений происходит в несколько стадий в результате целого ряда окислительно-восстановительных реакций. В ходе реакций образуются промежуточные продукты: альдегиды и кетины (ацетальдегид, глицеральдегид, фурфурол, ацетон, ацетоин, диацетил и др.), органические кислоты (пировиноградная, уксусная, муравьиная, молочная) и др. Некоторые их этих соединений обладают выраженным вкусом и запахом и могут в зависимости от концентрации и соотношения положительно или отрицательно влиять на вкус молочных продуктов.

Вследствие образования меланоидинов изменяются вкус и цвет молочных продуктов. Интенсивность окраски молока зависит от температуры и продолжительности ее воздействия.

Соли. В процессе тепловой обработки прежде всего изменяется состав солей кальция. Часть гидро- и дигидрофосфатов кальция, находящихся в ионно-молекулярной форме, переходит в плохо растворимый фосфат кальция:

3СаНРО4 → Са3(РО4)2 + Н3РО4

3Са(Н2РО4)2 → Са3(РО4)2 + 4Н3РО4

Образовавшийся фосфат кальция агрегирует в виде коллоида и осаждается на мицеллах казеина. При этом происходит необратимая минерализация ККФК, что приводит к нарушению его структуры и снижению термоустойчивости. Часть фосфата кальция вместе с денатурированными сывороточными белками образует отложения на поверхности теплообменных аппаратов (молочный камень или пригар).

Очевидно, что в результате тепловой обработки молока содержание в нем растворимого кальция снижается. Это снижение может достигать 50% в зависимости от вида и интенсивности тепловой обработки. Снижение растворимого кальция в молоке ухудшает его технологические свойства, в частности способность свертываться под действием сычужного фермента. Поэтому при производстве творога, сыра в молоко после пастеризации вносят растворимые соли кальция для восстановления солевого баланса.

Липиды. При нагревании молока белки и фосфолипиды частично переходят с поверхности жирового шарика в плазму, в результате чего оболочка шарика истончается.

При пастеризации дисперсность жира повышается, изменяется состав оболочек – нарушенные нативные оболочки шариков жира быстро восстанавливаются за счет адсорбции сывороточных белков и казеина молочной плазмы. Поэтому степень дестабилизации жира при пастеризации незначительна. Однако, в результате денатурации белковых компонентов оболочек шарики жира теряют способность склеиваться и отстой сливок замедляется.

При стерилизации молока происходит повышение степени денатурации белков оболочек жировых шариков, в результате чего может произойти дестабилизация эмульсии и, как следствие, появление деэмульгированного жира. (См.тему 10 п.10.3.2. «Факторы нарушения устойчивости жировой эмульсии»).

Витамины и ферменты. Наиболее устойчивы к термообработке жирорастворимые витамины (А, Д, Е), а из водорастворимых – витамины В2 (рибофлавин), В3 (пантотеновая кислота), РР (ниацин), Н (биотин). Более чувствителен к тепловой обработке витамин С (аскорбиновая кислота), потери его составляют от 10 до 30%. Частично разрушаются и витамины В12 (кобаламин) – от 10 до 20%, В6 (пиридоксин) – около 10%, В9 (фолацин) – от 10 до 20%.

Ферменты. Большая часть нативных и бактериальных ферментов инактивируются при тепловой обработке вследствие денатурации белковых компонентов их молекул. Скорость инактивации зависит от температуры нагревания и продолжительности ее воздействия.

Степень тепловой инактивации ферментов имеет важное практическое значение не только с точки зрения предохранения молока от воздействия ферментов на его составные компоненты, но и как объективный тест при контроле эффективности режимов тепловой обработки.

Ферменты молока в зависимости от вида и происхождения имеют различную термоустойчивость. Наиболее чувствительны к нагреванию амилаза, щелочная фосфатаза, каталаза, нативная липаза. Сравнительно устойчивы к нагреванию кислая фосфатаза, ксантиноксидаза, пероксидаза, бактериальные липазы и протеиназы.

При тепловой обработке (пастеризация, УВТ-обработка) молока возможны случаи неполного инактивирования термостабильных ферментов. Сохраняя свою активность, они могут вызвать в молоке и молочных продуктах нежелательные биохимические процессы, следствием которых является накопление продуктов расщепления составных компонентов молока, снижающих вкусовые свойства продуктов.

Наибольшую опасность представляют липазы и протеиназа бактериального происхождения: липазы способствуют прогорканию молочных продуктов, протеиназы вызывают свертывание УВТ-молока.

Контрольные вопросы

  1. Какие изменения происходят в белках при хранении молока в условиях положительных низких температур и при замораживании?

  2. В чем заключается изменение агрегатного состояния молочного жира при охлаждении молока?

  3. Каковы причины появления деэмульгированного жира при длительном хранении охлажденного молока?

  4. В чем заключается перераспределение форм солей в охлажденном молоке?

  5. Каким изменениям подвергаются белки под воздействием различных видов механической обработки молока?

  6. Каким образом влияет механическая обработка молока на активность ферментов?

  7. Каким изменениям подвержены сывороточные белки в зависимости от интенсивности и продолжительности тепловой обработки?

  8. Каким образом влияет тепловая обработка молока на казеинаткальцийфосфатный комплекс?

  9. Как влияет высокотемпературная обработка молока на лактозу?