Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Лекции по ФХ (2 часть) печать.doc
Скачиваний:
281
Добавлен:
09.09.2019
Размер:
6.11 Mб
Скачать

Причины диссоциации. Сольватация и гидратация Теплоты сольватации (гидратации)

Процесс электролитической диссоциации требует значительной затраты энергии. Происхождение этой энергии даже не рассматривалось в теории Аррениуса. По общепринятым сейчас представлениям, энергия, обеспечивающая появление ионов, выделяется в самом процессе электролитической диссоциации и представляет собой результат взаимодействия растворяемого вещества и растворителя. Благодаря этому взаимодействию образуются комплексы, содержащие молекулы растворителя – сольватированные (гидратированные) ионы. Энергетические эффекты, наблюдающиеся при этом, были названы, по предложению Фаянса (1915), энергиями сольватации (Gs) или, в водных средах, гидратации (Gг), а соответствующие тепловые эффекты – теплотами сольватации (– Нs = ) и гидратации (– Нг = ).

Все вещества, образующие ионы при растворении, можно разбить на две группы в зависимости от их строения и природы связей. К первой из них относятся соединения, кристаллическая решетка которых построена из ионов, – ионофоры. Для таких веществ термин «электролитическая диссоциация» не очень удачен, так как в них и до процесса растворения не было молекул. Сольватация в этом случае является источником энергии не процесса диссоциации молекул, а процесса разрушения решетки с образованием свободных ионов. Поэтому в растворителях с высокой диэлектрической проницаемостью все ионофоры – сильные электролиты. К другой группе относятся молекулярные вещества – ионогены. Образование ионов при растворении ионогенов происходит лишь благодаря их химическому взаимодействию с растворителем. Энергия, необходимая для разрыва химической связи, компенсируется энергией связи протона с молекулой воды в ионе гидроксония (если один из ионов – ион водорода) и энергией гидратации ионов Н3О+ и А. Ионогены в водных растворах – обычно слабые электролиты.

И для ионофоров, и для ионогенов конечными продуктами взаимодействия между растворяемым веществом и растворителем являются сольватированные ионы, а энергетические эффекты проявляются как энергии сольватации. Чтобы доказать это, надо рассчитать энергию сольватации и сопоставить ее с энергией кристаллической решетки (энергией химической связи). Если эти энергии окажутся близкими, то вывод о разрушении решетки соли (нейтральной молекулы ионогена) за счет ион-дипольного взаимодействия можно считать правильным.

Энергии и теплоты сольватации электролитов впервые были рассчитаны Борном и Габером (1919) при помощи циклов, основанных на законе Гесса.

NaCl (кр) Na+(газ) + Cl(газ)

HL Hs+ Hs

Na+ (aq) + Cl (aq)

HNaCl – изменение энтальпии в ходе разрушения кристаллической решетки хлорида натрия (связь с энергией решетки: Gp = HNaCl – TS; при 298К TS составляет приблизительно 15 кДж/моль);

HL – теплота растворения хлорида натрия, экстраполированная на бесконечно разбавленный раствор соли;

Hs+ , Hs – теплоты сольватации катиона и аниона.

Из этого цикла для теплоты сольватации хлорида натрия получаем:

HsNaCl = Hs+ + Hs = HL – HNaCl = 4 – 772 = – 768 кДж/моль.

Данное уравнение позволяет найти теплоту гидратации, если известны теплота растворения и энергия решетки. Теплоту растворения находят экспериментально, а энергии решеток рассчитывают либо по соответствующим уравнениям, либо из циклов, используя другие экспериментально определимые величины.

Как видно из расчета, теплота гидратации имеет тот же порядок, что и энергия решетки, и может обеспечить распад кристалла на отдельные ионы.