Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Лекции по ФХ (2 часть) печать.doc
Скачиваний:
267
Добавлен:
09.09.2019
Размер:
6.11 Mб
Скачать

Амфотерные электролиты

Существует группа соединений, в молекулах которых содержатся кислотные и основные группы. Такие соединения называют амфотерными электролитами, или амфолитами. Классический пример амфолитов – аминокислоты жирного ряда NH2RCOOH. В водном растворе аминокислот в результате внутренней ионизации образуются цвиттер-ионы (двойные или биполярные ионы, амфиионы):

NH2RCOOH  +NH3RCOO

При добавлении сильной кислоты в раствор аминокислоты происходит реакция

+NH3RCOO + Н++NH3RCOOН ,

а при добавлении сильной щелочи – реакция

+NH3RCOO + ОН  NH2RCOO + Н2О

Таким образом, основные свойства аминокислоты обусловлены группой – СОО, а кислотные – группой – NH3+ .

Произведение растворимости

При растворении твердых веществ в воде может быть достигнуто состояние насыщения раствора, при котором для данной температуры растворение вещества прекратится, при этом твердая фаза будет находиться в равновесии с растворенным веществом. Если вещество (соль MnAm) является электролитом, то в растворе установится равновесие

Mn Am (тв.)  n Mz+ + m Az– .

Константа диссоциации соли

Кд = ;

при данной Т является величиной постоянной.

Кд  = ПР = .

Таким образом, в насыщенном растворе соли произведение активностей ее ионов есть величина постоянная, она называется произведением растворимости.

Если соль малорастворима и ее раствор разбавлен, то в выражении для ПР активности можно заменить концентрациями.

Из уравнения для ПР следует, что при добавлении к раствору малорастворимой соли хорошо растворимого соединения, имеющего общий ион с малорастворимой солью, растворимость соли будет уменьшаться. Кроме того, добавление посторонней соли к раствору увеличивает ионную силу этого раствора и уменьшает коэффициент активности той соли, которая находилась в растворе до введения посторонней добавки.

Величины ПР имеют большое практическое значение в химической технологии и в аналитической химии, так как они определяют условия, при которых должно происходить растворение солей или выделение их из растворов.

ПР наиболее точно можно измерить методом ЭДС; часто также пользуются определением растворимости по электропроводности насыщенных растворов, однако этот метод применим только к растворам чистой соли.

Лекция 53

Электрохимические элементы. Электродвижущая сила. Термодинамика гальванического элемента

Гальванические элементы. Эдс

При прохождении электрического тока через электролит на поверхности электродов протекают электрохимические реакции. Протекание электрохимических реакций может порождаться внешним источником тока. Возможно и обратное явление: электрохимические реакции, протекающие на двух электродах, опущенных в электролит, порождают электрический ток, причем реакции идут только при замкнутой цепи (при прохождении тока).

Электрохимическим (или гальваническим) элементом называется устройство для получения электрического тока за счет электрохимических реакций. Простейший электрохимический элемент состоит из двух металлических электродов (проводников первого рода), погруженных в электролит (проводник второго рода) и соединенных между собой металлическим контактом. Несколько электрохимических элементов, соединенных последовательно, образуют электрохимическую цепь.

Важнейшей количественной характеристикой электрохимического элемента является электродвижущая сила (ЭДС, Е), которая равна разности потенциалов правильно разомкнутого элемента (такого, у которого к конечным электродам элемента присоединены проводники первого рода из одного и того же материала).

Если при прохождении электрического тока в разных направлениях на поверхности электрода протекает одна и та же реакция, но в противоположных направлениях, то такие электроды, а также элемент или цепь, составленные из них, называются обратимыми. ЭДС обратимых элементов является их термодинамическим свойством, то есть зависит только от Т, р, природы веществ, составляющих электроды и растворы, и концентрации этих растворов. Пример обратимого элемента  элемент Даниэля – Якоби:

() Cu Zn ZnSO4 CuSO4 Cu (+) ,

в котором каждый электрод обратим. При работе элемента идут следующие реакции: Zn  Zn2+ + 2e , Cu2+ + 2e  Cu. При пропускании тока бесконечно малой силы от внешнего источника на электродах протекают обратные реакции.

Пример необратимого элемента  элемент Вольта:

() Zn  H2SO4 Cu (+) .

При работе элемента протекают реакции Zn  Zn2+ + 2e , 2H+ + 2e  H2 . При пропускании тока от внешнего источника электродными реакциями будут 2H+ + 2e  H2 , Cu  Cu2+ + 2e .

ЭДС электрохимического элемента является величиной положительной, так как она соответствует определенному самопроизвольно протекающему процессу, дающему положительную работу. Обратному процессу, который не может протекать самостоятельно, отвечала бы отрицательная ЭДС.

При составлении цепи электрохимических элементов процесс в одном из элементов можно направить так, чтобы он сопровождался затратой работы извне (несамопроизвольный процесс), используя для этого работу другого элемента цепи, в котором идет самопроизвольный процесс. Суммарная ЭДС любой цепи равна алгебраической сумме положительных и отрицательных величин. Поэтому очень важно при записи схемы цепи учитывать знаки ЭДС, пользуясь принятыми правилами.

ЭДС электрохимической цепи считается положительной, если при записи цепи правый электрод заряжен положительно относительно левого (катионы при работе цепи проходят в растворе от электрода, записанного слева, по направлению к электроду, записанному справа, и в этом же направлении движутся во внешней цепи электроны).