Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
gene_expression.doc
Скачиваний:
641
Добавлен:
13.03.2016
Размер:
6.12 Mб
Скачать
      1. Регуляция терминации трансляции

Альтернативные сайты терминации трансляции могут быть использованы для расширения кодирующего потенциала определенных генов. Выше уже был рассмотрен пример, в котором в результате редактирования РНК в мРНК аполипопротеина B человека образуется новый терминирующий кодон, что приводит к синтезу в определенных тканях укороченного полипептида, кодируемого тем же самым геном, что и полипептид нормального размера.

Аналогичного эффекта система трансляции достигает посредством неполной терминации синтеза полипептидов на некоторых терминирующих кодонах. Из трех терминирующих кодонов наименее эффективным является UGA. Он чаще остальных ошибочно распознается транслирующей рибосомой как осмысленный (по-видимому, с участием триптофановой тРНК). В результате синтезируется более длинный полипептид, прекращение синтеза которого происходит на следующем терминирующем кодоне. В частности, такая ситуация наблюдается при трансляции РНК фага Q. Цистрон белка оболочки фага заканчивается терминирующем кодоном UGA, который с небольшой частотой распознается рибосомами как осмысленный, что приводит к синтезу более длинного, чем белок оболочки, полипептида. Этот полипептид требуется для сборки полноценной (жизнеспособной) фаговой частицы и является жизненно важным для бактериофага Q.

Для образования гибридного белка Gag-Pol ретровирусы типа С используют супрессию терминирующего кодона вместо сдвига рамки считывания. Супрессия происходит с эффективностью 5% и сопровождается ошибочным прочитыванием UAG-кодона глутаминил-тРНК. Терминирующий кодон UGA в том же положении декодируется как аргининовый, цистеиновый или триптофановый. Поскольку обычные терминирующие кодоны нормальных клеточных генов в этих условиях не супрессируются, делается вывод, что для осуществления супрессии терминирующий кодон должен находиться в определенном контексте. Запрограммированная супрессия терминирующих кодонов обнаружена, кроме того, у мРНК запасных белков растений, а также при трансляции геномной РНК вирусов растений. В последнем случае этот механизм используется для синтеза полипептидов РНК-зависимой РНК-полимеразы и удлинения белка оболочки.

Использование вышеописанных механизмов генетически запрограммированного сдвига рамки считывания транслируемой РНК или супрессии бессмысленных кодонов расширяет кодирующий потенциал геномов без физического увеличения их размеров. Еще более тонкий механизм изменения первоначальной генетической информации на уровне трансляции функционирует при введении в полипептидные цепи некоторых белков остатков селеноцистеина.

    1. Синтез белков, содержащих остатки селеноцистеина

С помощью своеобразного механизма осуществляется передача генетической информации от генов к полипептидным цепям селенопротеинов с необычным аминокислотным остатком – селеноцистеином, входящим в их состав. У бактерий и млекопитающих известно более десяти ферментов, в состав активных центров которых входит остаток селеноцистеина, содержащего, в отличие от цистеина, атом селена вместо атома серы. Так, у E. coli гены форматдегидрогеназ H, N или O имеют в одной рамке считывания с кодирующей последовательностью нуклеотидов триплет TGA. Этому триплету в мРНК соответствует бессмысленный кодон UGA, на котором у подавляющего большинства других мРНК E. coli происходит терминация трансляции. Оказалось, что именно кодон UGA в мРНК вышеупомянутых генов кодирует селеноцистеин.

Встраивание этого аминокислотного остатка в полипептидные цепи регулируется весьма тонким механизмом. Перенос остатка селеноцистеина к рибосомам у E. coli осуществляется с помощью специальных молекул тРНК (тРНКSec), которые на первом этапе соединяются с остатком L-Ser при участии серил-тРНК-синтетазы. Образовавшаяся серил-тРНКSec далее в результате многоступенчатого процесса под действием селеноцистеилсинтазы превращается в селеноцистеил-тРНКSec. Селеноцистеилсинтаза обладает высокой специфичностью и не взаимодействует с другими изоакцепторными серил-тРНК бактериальных клеток. Именно селеноцистеил-тРНКSec в процессе трансляции распознает в мРНК кодон UGA, но лишь в определенном контексте: для правильного узнавания UGA-кодона как осмысленного важна последовательность длиной в 45 нуклеотидов, расположенная вслед за UGA-кодоном. Кроме того, для правильного узнавания UGA-кодона селеноцистеил-тРНКSec необходимо участие белкового продукта гена selB, который является гомологом фактора элонгации трансляции EF-Tu и обладает высоким сродством именно к селеноцистеил-тРНКSec, но не к серил-тРНКSec. К тем же результатам, хотя и с использованием другого, не вполне понятного механизма, приводит встраивание в полипептидные цепи остатков селеноцистеина у млекопитающих.

Рассмотренный пример показывает, что при необходимости живой организм может изменять смысл стандартного генетического кода. В этом случае генетическая информация, заключенная в генах, кодируется более сложным образом. Смысл кодона определяется лишь в контексте с определенной протяженной последовательностью нуклеотидов и при участии нескольких высокоспецифических белковых факторов. Данный пример по-новому освещает понятие гена и смысл заключенной в нем генетической информации и не является единственным в своем роде.

Описано изменение смысла антикодона в тРНК путем посттранскрипционной модификации остатка цитозина с образованием так называемого лизидина. В этом случае происходит ферментативное присоединение Lys к гетероциклу цитидина в положении 2. В результате образовавшееся модифицированное основание – лизидин распознается как уридин, что изменяет специфичность антикодона модифицированной тРНК. Другое U-подобное азотистое основание – 5-карбамоилметилуридин (U*), обнаружено в антикодоне тРНКPro (U*GG), хотя в соответствующем гене этот антикодон детерминирован последовательностью CGG. По-видимому, здесь происходит посттранскрипционное дезаминирование цитозина с последующей его гипермодификацией.

Таким образом, во всех приведенных примерах живым организмам недостаточно генетической информации, заключенной в их генах, для ее полноценной реализации в фенотипе. Пока не понятны причины, по которым организм избегает прямого кодирования соответствующих последовательностей нуклеотидов в своих генах, а предпочитает создание требуемых последовательностей в РНК путем посттранскрипционных модификаций первичных транскриптов. Такие факты меняют наше традиционное представление о генах как первичных носителях генетической информации.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]