Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ЭУМК ФОЭТ 2011 - копия.doc
Скачиваний:
87
Добавлен:
23.12.2018
Размер:
8.5 Mб
Скачать

7.3.Термоэлектрические явления

Термоэлектрическими называют такие явления, в которых проявляется специфическая связь между тепловыми и электрическими процессами в металлах и полупроводниках.

Явление Зеебека. Зеебек(1821 г) обнаружил, что если спаи 1 и 2 двух разнородных металлов, образующих замкнутую цепь (рис.7.2), имеют неодинаковую температуру, то в цепи течет электрический ток. Изменение знака у разности температур спаев сопровождается изменением направления тока.

В замкнутой цепи для многих пар металлов электродвижущая сила прямо пропорциональна разности температур в контактах

Етермо = α AB (T2T1)

(7.5)

Эта ЭДС называется термоэлектродвижущей силой. Причина возникновения термоэлектродвижущей ЭДС можно понять, рассмотев внутреннюю контактную разность потенциалов на границе двух металлов. Так как положение уровня Ферми зависит от температуры, то при разных температурах контактов разными будут и внутренние контактные разности потенциалов. Поэтому сумма скачков потенциала на контактах будет отлична от нуля, что и приводит к возникновению термоэлектрического тока. При градиенте температуры происходит также диффузия электронов, которая тоже обуславливает термо-ЭДС.

Рис. 7.2.

Явление Зеебека используется:

1) для измерения температуры с помощью термопар – датчиков температур, состоящих из двух соединенных между собой разнородных металлических проводников. Таких спаев в термопаре может быть несколько;

2) для создания генераторов тока с прямым преобразованием тепловой энергии в электрическую. Их используют, в частности, на космических кораблях, спутниках в качестве бортовых источников электроэнергии;

3) для измерения мощности инфракрасного, видимого и ультрафиолетового излучений.

7.4.Контакт металл-полупроводник: выпрямляющий (барьер Шотки) и невыпрямляющий (омический) контакты

Контакты между полупроводником и металлом широко используются для формирования внешних выводов от полупроводниковых приборов (невыпрямляющие контакты) и создание быстродействующих диодов и транзисторов (выпрямляющие контакты). Тип контакта полупроводник - металл (п/п - Ме) определяется работой выхода электронов из металла в полупроводник, типом проводимости полупроводника и концентрацией примесей в нем. Сопутствующими факторами являются знак и плотность поверхно­ст­но­го заряда на границе раздела.

Выпрямляющий контакт характеризуется нелинейной ВАХ, следовательно прямое сопротивление контакта (при подаче прямого напряжения смещения) меньше обратного.

Для получения выпрямляющего контакта между металлом и полупро­водником n–типа проводимости работа выхода электронов из металла, jм, должна быть больше, чем у полупроводника, jп, то есть разность работ выхода jмп=jм – jп должна быть больше нуля (jмп>0). Вели­чину jмп называют контактной разностью потенциалов. В этом случае при образовании контакта часть электронов переходит из полупроводника в металл; в полупроводнике появляется обедненный слой, содержащий положительный заряд ионов доноров. В обедненном слое возникает электриче­ское поле, препятствующее диффузии электронов к контакту (рис. 7.3, а).

Рис.7.3

В контакте металла с полупроводником p-типа работа выхода электронов из металла должна быть меньше, чем из полупроводника, то есть контактная разность потенциалов jмп<0. При этом электроны из металла переходят в полупроводник, что приводит к уменьшению концентрации дырок в его приповерхностной области (рис. 7.3, б).

На зонных диаграммах рис. 7.3 изгиб зон вверх в полупроводнике n-типа (рис. 7.3, а) и вниз в полупроводнике p-типа (рис. 7.3, б) соответствует уменьшению концентрации основных носителей, образованию обедненных слоев и потенциальных барьеров jкn для электронов и jкp для дырок, переходящих из полупроводника в металл.

Потенциальный барьер в приконтактном слое называют барьером Шотки. Его высота jкn для электронов и jкp для дырок является аналогом величины jк в p-n переходе. В зависимости от полярности приложенного внешнего напряжения высота этого барьера и, соответственно, сопротивление приконтактного слоя будут меняться.

Теоретическая оценка высоты барьера jмп сложна; на практике используются экспериментальные величины jмп. Например, при контакте Al c n-Si высота барьера jмп=0,72 В, а при контакте Al c p-Si высота барьера jмп=0,58 В. Для других металлических покрытий (Au, Ag, Pt, W, PtSi, WSi) при контакте с Si или GaAs эта величина составляет 0,4…0,9 В.

Равновесная ширина l обедненного слоя контакта п/п – Ме, такая же как и для резко несимметричного p-n перехода . Чем выше высота барьера, тем больше ширина обедненного слоя.

В зависимости от полярности приложенного внешнего напряжения высота барьера jкn для электронов и jкp для дырок со стороны полупроводника будут меняться. Соответственно, будет изменяться и сопротивление приконтактного слоя.

При этом подача отрицательного потенциала U на n-полу­про­вод­ник или положительного – на p-полупроводник соответствует прямому напряжению на контакте п/п – Ме. Смена полярности приложенного напряжения соответствует включению обратного смещения.

Например, в контакте n-п/п – Ме при включении прямого напряжении U (плюсом к металлу, минусом к полупроводнику) уровень Ферми в металле, jFм, понижается относительно уровня Ферми в полупроводнике, jFn, на величину U, следовательно высота потенциального барьера, препятствующего переходу электронов из полупроводника в металл, уменьшается и становится равной jкU. При включении обратного напряжения (минусом к металлу) уровень Ферми jFм повышается относительно jFn на величину U, поэтому высота потенциального барьера со стороны n-полупроводника увеличивается и становится равной jк +U. Величина контактной разности потенциалов jмп при этом остается неизменной.

Таким образом, контакты, показанные на рис. 7.3, обладают выпрямляющими свойствами и могут быть основой диодов. Диоды, использующие барьеры Шотки, называют диодами Шотки. ВАХ выпрямляющего контакта аппроксимируется уравнением:

,

где 10-15 А/м2 – плотность тока насыщения (уравнение Ричардсона), B≈1,1∙106 A/(м∙K)2- коэффициент, φмп –высота барьера металл-полупроводник.

Невыпрямляющий (омический) контакт используется практически во всех полупроводниковых приборах для формирования внешних выводов от полупроводниковых областей; для него характерны близкая к линейной ВАХ и малое сопротивление.

Для получения омического контакта межу металлом и полупроводником n- типа проводимости разность работ выхода jмп<0 (т. е. работа выхода электронов из металла, jм, должна быть меньше работы выхода из полупроводника, jп), а между металлом и полупроводником p-типа проводимости разность работ выхода jмп>0 (т. е. jм>jп ). В первом случае электроны будут переходить из металла в полупроводник и зоны искривятся "вниз" (рис. 7.4, а), а во втором случае электроны будут переходить из полупроводника в металл и зоны искривятся "вверх" (рис. 7.4, б). В таких контактах вблизи границы в полупроводнике накапливаются основные носители, то есть получаются обогащенные зоны.

Наличие обогащенного слоя означает, что сопротивление контакта определяется нейтральным слоем полупроводника и, следовательно, не зависит ни от величины, ни от полярности приложенного напряжения. Иными словами, в этом случае потенциальные барьеры для движения носителей тока со стороны полупроводника и металла практически отсутствуют.

Рис.7.4

Следует еще раз подчеркнуть, что реально в полупроводниках электронного типа проводимости существует отрицательный поверхностный заряд, плотность которого, отнесенная к заряду электрона, составляет от 1012…1016 м-2 (для кремния) до 1015 м-2 (для арсенида галлия). Под действием этого заряда электроны выталкиваются из приповерхностного слоя полупроводника, что так же способствует образованию обеденного слоя. Поэтому высота барьера jмп определяется не только разностью работ выхода, но и плотностью поверхностного заряда, а при очень высокой плотности поверхностного заряда (например, в арсениде галлия) практически не зависит от вида металла.

7.5.Физические процессы в электронно-дырочном переходе.

В большинстве полупроводниковых приборов используется р-п переход (иногда р-п переход не нужен, например, в фотосопротивлениях, или диодах Ганна).

р-п переход - это структура, содержащая дырочную и электронную области полупроводника. Причём эти области получены в единой структуре за счёт диффузии доноров или акцепторов. Но мы условно будем считать, что эти области сначала существовали раздельно, а затем были объединены. Итак, есть две области, электронная и дырочная:

Мы может построить зонные диаграммы для этих полупроводников:

Уровни Ферми в p- и n - находятся на разной высоте, так как слева полупроводник п-типа, и уровень Ферми выше середины запрещённой зоны, а справа полупроводник р-типа, и уровень Ферми ниже середины. При соединении полупроводников электроны, которых слева много, будут диффундировать направо, а дырки, которых много справа, будут диффундировать налево (указано стрелками).

При этом левая часть структуры заряжается положительно, а правая – отрицательно.

Но при этом энергия электрона слева будет уменьшаться, а справа будет увеличиваться, т.е. произойдёт сдвиг левой части диаграммы вниз, а правой – вверх. Этот процесс должен закончиться, когда совпадут положения уровней Ферми в левой и правой части полупроводника (в равновесии уровни Ферми в разных частях сложной системы совпадают). При этом между левой и правой частью полупроводника появляется электрическое поле, направленное от плюса к минусу.. Это электрическое поле вызывает возникновение дрейфового тока, направленного так, что электроны текут справа налево, а дырки – наоборот. Чем больше электрическое поле, тем больше этот ток. В конце концов он уравновесит диффузионный ток, так как он по направлению ему противоположен.

Установится динамическое равновесие (одновременно существуют два диффузионных тока – электронов и дырок – и два дрейфовых тока, которые все между собой равны).

Динамическое равновесие p-n-перехода. Образование электронно-дырочного перехода вблизи границы, разделяющей области полупроводника с различным типом электропроводности, обусловлено следующими явлениями. Диффузия основных носителей p- и n-областей в противоположную область приводит к возникновению вблизи границы объемных электрических зарядов – положительного в n-области и отрицательного в p-области, как показано на

рис. 7.5, а.

Эти заряды обусловлены появлением нескомпенсированных ионизированных атомов донорной примеси (положительные неподвижные заряды) в n-области и нескомпенсированных ионизированных атомов акцепторной примеси (отрицательные неподвижные заряды) в p-области.

Между нескомпенсированными зарядами в n- и p-областях возникает электрическое поле напряженностью , называемое внутренним, и контактная разность потенциалов (рис. 7.5, б):

, (7.6)

где  – постоянная Больцмана;  – абсолютная температура;  – заряд электрона; ,  – концентрация акцепторной и донорной примеси соответственно;  – концентрация примеси в собственном полупроводнике; ,  – электрический потенциал p- и n-области соответственно. Электрическое поле препятствует дальнейшей диффузии носителей заряда через переход, при этом возникает потенциальный энергетический барьер для основных носителей величиной .

В ектор напряженности внутреннего электрического поля в p-n-переходе направлен от n-области к p-области. Поэтому возникшее электрическое поле вызывает дрейфовый перенос носителей из области, где они являются неосновными, в ту область, где они становятся основными носителями. Электроны дрейфуют из p-области в n-область, а дырки наоборот. Дрейфовый ток имеет направление, встречное диффузионному . При отсутствии внешних воздействий на переход устанавливается состояние динамического равновесия, при котором суммарный ток через переход равен нулю: , т.е. число диффундирующих носителей равно числу дрейфующих носителей.

Ширина перехода определяется следующим выражением:

, (7.7)

где  – абсолютная диэлектрическая проницаемость полупроводника; ,  – глубина проникновения перехода в p- и n-область соответственно.

Область p-n-перехода, характеризующуюся низкой концентрацией подвижных носителей заряда, можно рассматривать как квазидиэлектрик, поскольку подвижные носители заряда из нее удаляются внутренним электрическим полем и диффузией. По этой причине p-n-переход часто называют обедненным слоем.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]