Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Химмотология.doc
Скачиваний:
43
Добавлен:
16.09.2019
Размер:
2.48 Mб
Скачать

6.2 Вопросы для самопроверки

1. Назовите основные закономерности испарения топлив.

2. Каково влияние испаряемости на экономию топлив, мощностные характеристики ДВС и экологическую безопасность автомобиля?

3. Как и в каком режиме происходит образование горючей смеси распыленного топлива?

7 Общие закономерности горения жидких топлив

Горение – сложный, быстропротекающий химический процесс взаимодействия горючего и окислителя, сопровождающийся появлением пламени, излучающего энергию в виде тепла и света. Этот процесс является основой превращения химической энергии топлива в механическую энергию тепловых двигателей. Горение сопровождается очень сложными окислительно-восстановительными процессами, так как химические реакции протекают в условиях быстро изменяющихся температур и концентраций реагирующих веществ, под влиянием процессов тепло- и массообмена, различных газодинамических возмущений, испарения капель и смешения паров топлива с воздухом [1, 68, 11].

Для теоретического рассмотрения этого сложного, с учетом влияния различных факторов, процесса применяют построение упрощенных моделей горения. В теории горения получила широкое распространение упрощенная модель, основанная на том, что скорость химической реакции горения лимитируется медленнопротекающими физическими процессами – испарения распыленного топлива, смесеобразования, теплообмена и другими («физическая» модель процесса горения), которая предполагает, что химические закономерности горения можно свести к физическим закономерностям.

Существуют два способа сжигания горючей смеси: первый основан на самопроизвольном распространении пламени по горючей смеси при создании элементарного очага пламени поджигающим устройством; второй – на подогреве объема испаренной горючей смеси до температуры, превышающей ее температуру самовоспламенения. Механизм химических реакций в первом случае обусловлен следствием взаимодействий молекул (активных частиц) горючей смеси, протекающих как во фронте пламени, так и в зоне непосредственного контакта свежей смеси с фронтом пламени. А пламя представляет собой «реактор», в котором происходят химические превращения компонентов горючей смеси в конечные продукты сгорания. Во втором случае пламя возникает на завершающей стадии процесса горения, но основные химические реакции протекают в большом объеме смеси до момента появления пламени, которое не оказывает влияния на протекающие в смеси предпламенные процессы.

7.1 Краткая характеристика пламен

В зависимости от условий сжигания топлив, начального физического состояния горючего и окислителя, аэродинамики их движения, пламена классифицируют: на светящиеся и прозрачные, на стационарные (непрерывные) и периодические (дискретные), на кинетические (с предварительно перемешанными горючим и окислителем) и диффузионные (горючее и окислитель поступают к фронту пламени раздельно, а на процесс горения влияет взаимная диффузия реагирующих молекул и частиц), на ламинарные и турбулентные (в зависимости от аэродинамики движения горючего и окислителя).

Характерным свойством пламени является его способность излучать энергию, а излучение является следствием перехода молекулы или атома из возбужденного состояния в основное, и при этом виде излучения выделяется квант энергии, равный hν, где h – сonst Планка, ν – частота электромагнитного колебания. Излучение пламени может иметь тепловую или хемилюминесцентную природу. В первом случае переход атомов (молекул) в возбужденное состояние обусловлен их тепловым движением, которое является следствием обмена энергией при соударениях. При хемилюминесцентной – переход атомов (молекул) в возбужденное состояние происходит вследствие протекающих в пламени экзотермических химических реакций.

Спектральными исследованиями показано, что излучение пламен имеет в основном хемилюминесцентную природу и основная часть излучаемой энергии приходится на ИК-область спектра, в то время как видимое и УФ-излучения составляют менее 1 % общей энергии излучения. Излучение ослабляется при его прохождении через свежую горючую смесь в основном за счет его поглощения молекулами смеси, а потери лучистой энергии, обусловленные рассеянием и отражением, обычно невелики и ими можно пренебречь. Согласно квантовой теории процесс обмена энергии между излучением и молекулами вещества является дискретным, при котором молекула поглощает определенный квант энергии (hν), где значение частоты (ν) определяется разностью энергий ее возбужденного и основного состояний. Следовательно, из всего спектра частот электромагнитного излучения сложные молекулы поглощают только те кванты света, частота которых совпадает с собственными частотами движения внешнего электрона в молекуле вещества. В ИК-диапазоне частот молекула, накапливая энергию излучения за счет поглощения фотонов, приобретает энергию, достаточную для ее диссоциации на мелкие фрагменты в предпламенной зоне. В пламенах образуются также заряженные частицы: ионы, ион-радикалы, причем в отличие от водородных, оксида углерода, сероводорода и сероуглерода углеводородо-воздушные пламена сильно ионизированы и при давлениях 0,30–98 кПа их концентрация может достигать 109–1012 ион·см-3, а напряженность магнитного поля 10–50 В/см. Источником отрицательного заряда в пламени являются свободные электроны, а наиболее вероятным путем образования ионов в пламени является хемиионизация.