Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Электричество и магнетизм (Медведь ИН).doc
Скачиваний:
58
Добавлен:
25.09.2019
Размер:
12.53 Mб
Скачать

§ 47. Взаимная индукция.

Если проводящие контура или проводники расположены достаточно близко, то при изменении силы тока в одном из них через поверхность, ограниченную вторым изменяется магнитный поток, и, соответственно, в нем возникает индукционный ток. Такие контура называются «сцепленными» или индуктивно связанными (рис.115).

Магнитное поле первого тока создает поток через поверхность второго контура и наоборот .

L21 и L12 - называются коэффициентами взаимной индукции, зависят от геометрической формы, размеров, взаимного расположения контуров и магнитных характеристик среды.

Расчеты и эксперименты показывают, что при неизменной величине перечисленных параметров коэффициенты взаимной индукции равны L21=L12.

Это свойство коэффициентов взаимной индукции позволяет значительно упростить расчет самих коэффициентов, а также магнитных потоков, и, поэтому это равенство принято называть теоремой взаимности.

На практике взаимная индукция проявляется при прохождении тока по коаксиальному кабелю (рис.116), по двухпроводной линии (рис.117) и т.п.

РИС.118 РИС.119

Явление взаимной индукции двух катушек (рис.120), намотанных на общий сердечник, лежит в основе трансформаторов, широко используемых устройств для повышения или понижения напряжения переменного тока. На рис. 121 приведен внешний вид демонстрационного трансформатора, принципиальное устройство и принятое обозначение трансформатора в электрической схеме.

Рис.120 РИС.121

§ 48 Энергия магнитного поля.

Найдем энергию магнитного поля для частного случая магнитного поля соленоида.

При отключении источника постоянной ЭДС, в цепи, содержащей индуктивность (рис.113), в течение некоторого промежутка времени, протекает убывающий по величине ток (рис.114).

В этом случае, при протекании тока работа совершается сторонними силами, ответственными за ЭДС самоиндукции. В результате чего выделяется теплота, равная этой работе, а энергия магнитного поля соленоида исчезает.

,

- энергия магнитного поля соленоида, определяется параметрами конкретной катушки и током, протекающим в ней.

Получим связь между энергией магнитного поля и его характеристиками. Пусть соленоид достаточно длинный, чтобы магнитное поле в нем можно было считать однородным, а индуктивность можно было рассчитывать по формуле

. Подставив в формулу, получим : .

Введем объемную плотность энергии магнитного поля:

.

Эта формула позволяет рассчитать энергию магнитного поля любой конфигурации:

Тема IX. Цепи переменного тока. § 49. Колебательный контур. Свободные элетромагнитные колебания в идельном контуре.

В цепи, содержащей конденсатор и катушку индуктивности , могут возникнуть электромагнитные колебания. Поэтому такая цепь называется колебательным контуром.

РИС.122 РИС.123 РИС.124

Если заряженный конденсатор замкнуть на катушку индуктивности, то в контуре возникает убывающий по величине ток (рис.122). Вследствие этого в катушке возникает ЭДС индукции, противодействующая убыванию тока, поддерживающая ток и после окончательной разрядки конденсатора. Следовательно, энергия электрического поля в конденсаторе переходит в энергию магнитного поля в катушке.

Когда конденсатор полностью разрядится, то ток в цепи поддерживается за счет энергии магнитного поля (рис.123), что приводит к перезарядке конденсатора и, соответственно, к переходу энергии магнитного поля в энергию электрического поля.

В реальном колебательном контуре необходимо учитывать сопротивление входящих в него проводников, а, следовательно, при протекании тока часть энергии электрического и магнитного поля выделяется в виде количества теплоты. Поэтому в реальном колебательном контуре электромагнитные колебания очень быстро прекращаются, а сопротивление, на котором энергия электрического тока переходит в тепловую, называется активным.

Рассмотрим колебательный контур, содержащий последовательно включенные емкость, индуктивность, активное сопротивление и источник внешней переменной ЭДС (рис.124).

За счет работы сторонних сил внешней ЭДС совершается работа на всех участках цепи, а следовательно:

, , , или

- уравнение колебаний величины заряда на пластинах конденсатора (уравнение колебательного контура).

Его решение позволяет найти зависимость величины заряда на пластинах конденсатора от времени q=f(t), а затем I=f(t) и Uc=f(t).

Электромагнитные колебания называются свободными, если источник внешней ЭДС отсутствует . Рассмотрим идеальный колебательный контур, т.е. активное сопротивление которого R=0. Пусть в начальный момент времени конденсатор полностью заряжен (рис.122).

В этом случае уравнение свободных колебаний: ,

решением которого является , т.к. при t=0 заряд конденсатора максимален. Следовательно, свободные электромагнитные колебания в контуре являются гармоническими. - собственная циклическая частота электромагнитных колебаний в контуре, - формула Томсона для периода.

Тогда , напряжение на конденсаторе . Из этих уравнений следует, что ток опережает по фазе колебания заряда и напряжения на , т.е. когда ток достигает максимальной величины заряд и напряжение на конденсаторе равны нулю и наоборот (рис.125).

РИС.125

Так как при R=0 потерь энергии на тепло нет, то выполняется закон сохранения энергии: . Следовательно, колебания заряда, тока и напряжения происходят с постоянной амплитудой, т.е. свободные колебания в идеальном контуре являются незатухающими.

Энергия электрического поля в конденсаторе и магнитного поля в катушке индуктивности, оставаясь все время положительными, также меняются по величине, но с периодом в 2 раза меньшим, чем период колебаний величины заряда и тока (рис.125).