Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Электричество и магнетизм (Медведь ИН).doc
Скачиваний:
58
Добавлен:
25.09.2019
Размер:
12.53 Mб
Скачать

§ 60 Парамагнетики.

К парамагнетикам относятся вещества, атомы или молекулы которых имеют магнитный момент. В отсутствии магнитного поля вследствие теплового движения магнитные моменты ориентированы беспорядочно и вещество не обладает магнитными свойствами.

В магнитном поле, как рассмотрено выше для рамки с током, в положении с минимальной энергией магнитный момент должен быть направлен по вектору магнитной индукции: .

Поэтому в магнитном поле ориентация магнитных моментов вдоль поля энергетически наиболее выгодна. Но, как рассмотрено для диамагнетиков, магнитное поле не изменяет угол между механическим, а значит и магнитным моментом, и направлением индукции внешнего поля.

Внешнее магнитное поле вызывает лишь прецессию механического и магнитного моментов вокруг вектора магнитной индукции, а следовательно, не может ориентировать магнитные моменты вдоль индукции внешнего поля.

Но в веществе атомы и молекулы участвуют в тепловом движении и взаимодействуют между собой. Эти взаимодействия можно рассматривать как соударения, в которых частицы вещества получают дополнительную энергию и ориентируются по вектору магнитной индукции.

Следовательно, наличие теплового движения приводит к равновесному распределению магнитных моментов с преимущественной ориентацией их вдоль вектора магнитной индукции.

В 1905 г. Ланжевен использовал теорему Больцмана для парамагнетиков – неметаллов и получил выражение для среднего значения проекции магнитного момента на направление напряженности внешнего поля: , где - напряженность магнитного поля, в котором находится частица с магнитным моментом.

Так как парамагнетики намагничиваются слабо, то, практически, - напряженности внешнего поля. Если концентрация атомов равна n, вектор намагничивания (как магнитный момент единичного объема) равен: .

Это выражение согласуется с экспериментальными данными о пропорциональности вектора намагничивания напряженности внешнего поля , а также с установленным экспериментально для парамагнетиков законом Кюри для магнитной восприимчивости: . Сравнение показывает, что константа в законе Кюри равна .

Теория Ланжевена не подходит для металлов, так как свободные электроны имеют собственные магнитные моменты –спины. Кроме того, для многих жидких и твердых парамагнетиков, теория, предполагающая свободную прецессию магнитных моментов атомов, оказывается недостаточной.

Закон Кюри нарушается как для этих парамагнитных веществ, так и в очень сильных полях или при очень низких температурах.

Самостоятельно: §61 ферромагнетики. Тема XI. Электромагнитное поле § 62 . Обобщения максвелла. Ток смещения.

Эксперименты Эрстеда, Ампера, Фарадея установили тесную взаимосвязь электрических и магнитных явлений в виде отдельных законов. Но если эти явления так тесно связаны, то должна существовать полная система уравнений электромагнитного поля, которая однозначно определяет все уже как изученные, так и неизученные его свойства и проявления.

Джеймс Кларк Максвелл обобщил эмпирические законы электричества и магнетизма, сформулировал определенные гипотезы и на этом основании предложил полную систему уравнений электромагнитного поля.

Первая гипотеза Максвелла уже обсуждалась при рассмотрении закона электромагнитной индукции. Максвелл предположил, что при всяком изменении магнитного поля возникает вихревое электрическое поле, которое, при наличии свободных зарядов, вызывает их направленное движение – индукционный ток.

Закон электромагнитной индукции – это одно из уравнений теории Максвелла: или .

Это уравнение показывает, что произвольное электрическое поле, в отличие от электростатического, – не потенциально. Циркуляция вектора напряженности по замкнутому контуру не равна нулю. В общем случае, когда электрическое поле создается и зарядами и переменным магнитным полем, часть линий напряженности будет начинаться и кончатся на зарядах, а другая часть линий будет замкнута. В отсутствии зарядов все линии поля будут замкнуты.

Вторая гипотеза Максвелла была выдвинута для объяснения процесса протекания квазистационарного тока в цепи с конденсатором.

Если в конденсаторе, заполненном диэлектриком, пойдет ток проводимости, - направленное движение электронов, то это приведет к разрушению диэлектрика – пробою. При постоянном токе, в ветвях цепи, содержащих конденсатор, ток протекает только при замыкании и размыкании цепи. При переменном токе сопротивление конденсатора тем меньше, чем больше частота тока.

Кроме того, для переменного тока не выполняется теорема о циркуляции вектора напряженности в интегральном виде , поскольку справа стоит ток через любую поверхность, ограниченную контуром. Если ток постоянный, то две произвольные поверхности S1 и S2 , ограниченные одним контуром L, пронизывает один и тот же суммарный ток (рис. 182).

РИС.182 РИС.183 РИС.184 РИС.185

В случае переменного тока, в цепи с конденсатором, ток через произвольную поверхность S2 равен нулю.

Кроме того, в дифференциальной форме эта теорема также справедлива только для стационарного тока, при котором

.

Так как внутри конденсатора тока проводимости нет, но между обкладками заряжающегося и разряжающегося конденсатора существует переменное электрическое поле, то Максвелл назвал это переменное электрическое поле – «ток смещения». Максвелл выдвинул гипотезу, что переменное электрическое поле, как и ток проводимости, создает магнитное поле.

Эта гипотеза позднее была подтверждена экспериментально.

Получим формулу для тока смещения, используя следующие соотношения: , , , .

Объемная плотность тока смещения равна: .

Понятие тока смещения позволило Максвеллу ввести еще одно уравнение: .

Физический смысл этого уравнения в том, что магнитное поле порождается не только токами проводимости, но и переменным электрическим полем. Максвелл, таким образом, выдвинул гипотезу о существовании фундаментального явления природы – порождении магнитного поля переменным электрическим.

На рис.184(а) показано направление тока смещения при зарядке конденсатора, а на рис.184(б) – при разрядке. Следовательно, ток смещения всегда направлен также, как и ток проводимости, но, не эквивалентен ему.

Поскольку: , то .

В вакууме нет ни свободных, ни связанных зарядов и магнитное поле порождается только вихревым электрическим полем.

В диэлектриках выражение - плотность тока поляризации соответствует смещению зарядов в неполярных молекулах или разворачиванию диполей. Эти токи поляризации по своей природе не отличаются от токов проводимости.

В проводниках токи смещения также присутствуют, но они значительно меньше токов проводимости и ими пренебрегают.