Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Электротехника Лекции.doc
Скачиваний:
729
Добавлен:
10.02.2015
Размер:
41.57 Mб
Скачать

2. Диэлектрик в электрическом поле. Поляризация диэлектрика

По сравнению с проводниками количество свободных заряженных частиц в диэлектрике очень мало.

Диэлектрик, внесенный в электрическое поле, так же как и проводник, электризуется. Однако между электризацией проводника и диэлектрика имеется существенная разница. Если в проводнике под влиянием сил электрического поля свободные электроны передвигаются по всему объему проводника, то в диэлектрике свободного перемещения электрических зарядов произойти не может. Но в пределах одной молекулы диэлектрика возникает смещение положительного заряда вдоль направления электрического поля и отрицательного заряда в обратном направлении. В результате этого смещения зарядов на поверхности диэлектрика возникают электрические заряды. Это явление называется поляризациейдиэлектрика.

Различают диэлектрики с полярными (вода, аммиак, эфир, ацетон и т.д.) и неполярными молекулами. Полярные молекулы можно рассматривать как электрический диполь (рис.24 а).

Рис.24

Электрический диполь – это совокупность двух частиц с электрическими зарядами, равными по величине и противоположными по знаку. Эти заряды настолько близко располагаются друг к другу, что действие их взаимно компенсируется (рис.24а). При отсутствии электрического поля диполи в пространстве расположены хаотически и вследствие этого результирующее поле вокруг полярного диэлектрика равно нулю. Под действием внешнего электрического поля молекулы ( а стало быть и диполи) стремятся повернуться так, чтобы их оси совпали с направлением внешнего поля. Во внешнем электрическом поле полярная молекула (диполь) испытывает действие пары сил, которая поворачивает ее так, что электрический момент оказывается направленным так же, как и напряженность внешнего поля. На рис.24 б,в показан диэлектрик и однородном электрическом поле между двумя заряженными металлическими пластинами).

В неполярных молекулах диэлектрика под действием внешнего поля заряженные частицы смещаются вдоль направления вектора напряженности Е, в результате чего молекулы приобретают вид диполей. Диэлектрик, внесенный в электрическое поле, электризуется. Это происходит за счет того, что в пределах одной молекулы возникает смещение положительного и отрицательного заряда.

а б

Рис.25

Электроны смещаются в направлении противоположном полю. Это явление ограниченного смещения заряженных частиц в молекуле или изменение ориентации дипольных молекул под действием внешнего электрического поля называется поляризациейдиэлектрика. Таким образом, поляризация представляет собой упругое смещение электрических зарядов в веществе диэлектрика.

На границе между металлической пластиной и диэлектриком распределены два вида заряженных частиц: свободные частицы металлической пластины, которые создают внешнее электрическое поле (напряженностью ), и связанные частицы диэлектрика противоположного знака, создающие внутреннее поле (напряженностьЭлектрическое поле в диэлектрике есть результат наложения двух полей – внешнего и внутреннего.

Напряженность результирующего поля =Влияние диэлектрика на результирующее электрическое поле оценивают векторной величиной, называемой вектором поляризации

(3-1)

ε (эпсилон)- относительная диэлектрическая проницаемость. Откуда видно, что вектор поляризации пропорционален напряженности электрического поля.

Чем сильнее поляризуется диэлектрик, тем слабее получается результирующее поле, тем больше электрическая проницаемость εданного диэлектрика.

При исчезновении поля исчезает и поляризация. Однако имеются такие диэлектрики, которые, будучи поляризованными внешним электрическим полем, сохраняют остаточную поляризацию и в отсутствие поля. К ним относятся сегнетоэлектрики. Т.е. в сегнетоэлектриках наблюдается отставание (гистерезис) изменений электрического смещения зарядов от изменений напряженности внешнего поля.

У диэлектрика, находящегося в переменном поле, смещение зарядов также изменяется, что вызывает нагревание диэлектрика. Чем выше частота внешнего поля, тем сильнее нагревается диэлектрик. Явление нагревания диэлектрика в переменном поле применяется при сушке влажных материалов, при ускорении химических реакций.

Принято сопоставлять диэлектрические свойства различных веществ с электрическими свойствами вакуума – с электрической постоянной ε0=8,85 10-12Ф/м. Отношение диэлектрической проницаемости вещества εск электрической постоянной –это относительная диэлектрическая проницаемость ε, т.е.

(3-2)

У большинства диэлектриков величина ε лежит в пределах 1-10 и мало зависит от электрических условий и температуры среды. Относительная диэлектрическая проницаемость ε – это величина, показывающая, во сколько раз диэлектрическая проницаемость среды больше электрической постоянной. Величина ε не имеет размерности.

Таблица 4

Диэлектрическая проницаемость (относительная) и электрическая прочность некоторых материалов

У сегнетоэлектриков (титанат бария, титанат свинца, сегнетова соль и др.) величина ε может достигать значений порядка многих тысяч и является не постоянной. Сильно, например, зависит от температуры и напряженности внешнего электрического поля.

При расчетах электрических полей в диэлектриках кроме напряженности электрического поля Е пользуются понятием электрического смещения D. Электрическое смещение

. (3-3)

Обе величины и D, и Е являются силовыми характеристиками электрического поля, только напряженность поля учитывает свойства среды, а электрическое смещение не зависит от нее.

Через вектор поляризации величину D можно представить так:

(3-4)

Таким образом, электрическое смещение принято рассматривать как состояние, складывающееся из смещения в вакууме и смещения в диэлектрике.