Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Лекции по физики Аксенова .doc
Скачиваний:
241
Добавлен:
15.03.2015
Размер:
3.44 Mб
Скачать

13.13. Эквипотенциальные поверхности

Совокупность точек, имеющих равный потенциал, образуют так называемые эквипотенциальное поверхности, или поверхности равного потенциала (рис 13.15).

С их помощью также можно графически изобразить электростатическое поле. Направление нормали к эквипотенциальной линии будет совпадать с направлением вектора  в той же точке. Эквипотенциальные поверхности можно провести через любую точку поля. Следовательно, таких поверхностей может быть построено бесконечное множество. Однако, проводят поверхности таким образом, чтобы разность потенциалов для двух соседних поверхностей была всюду одна и та же. Тогда по густоте эквипотенциальных поверхностей можно судить о величине напряженности. Чем гуще располагаются эквипотенциальные поверхности, тем быстрее изменяется потенциал при перемещении вдоль нормали к поверхности.

13.14. Связь между напряженностью и потенциалом

Из выше сказанного следует, что электрическое поле характеризуется двумя физическими величинами: напряженностью (силовая характеристика) и потенциалом (энергетическая характеристика). Выясним как они связаны между собой. Пусть положительный заряд q перемещается силой электрического поля с эквипотенциальной поверхности, имеющей потенциал  , на близко расположенную эквипотенциальную поверхность, имеющую потенциал  (рис. 13.16).

Напряженность поля Е на всем малом пути dx можно считать постоянной. Тогда работа перемещения  С другой стороны  . Из этих уравнений получаем

(13.22)

Знак минус обусловлен тем, что напряженность поля направлена в сторону убывания потенциала, тогда как градиент потенциала направлен в сторону возрастания потенциала.

13.15.Вычисление потенциала простейших электрических полей

1. Электрическое поле сферической поверхности радиуса R.

  1. Разность потенциалов между двумя точками, лежащими на расстоянии  и  от центра заряженной сферической поверхности  , находим из формулы

Интегрируя левую и правую части этого уравнения

получим

  1. Положив  и  , получим потенциал заряженной сферической поверхности

  1. Внутри заряженной сферы поля нет, и потому весь ее объём эквипотенциален, т.е.

и 

и равен потенциалу на поверхности (при r=R).

2. Потенциал электрического поля плоскости.

Найдем разность потенциалов между двумя точками М и N, лежащими на расстоянии  и  от плоскости.  , Но для плоскости  , поэтому

Проинтегрировав последнее выражение по х от  до  и обозначив потенциал в точках М и N через  и  , получим

3. Разность потенциалов между двумя параллельными плоскостями

Находящимися на расстоянии а друг от друга, найдем аналогичным путем:

, или (с учетом 13.15)

4. Электрическое поле бесконечного длинного прямого кругового цилиндра.

Воспользуемся, как прежде, связью потенциала с напряженностью и уравнением (13.13):

14. Электрическое поле в диэлектриках. Введение

Свободные заряды, имеющиеся в любом проводнике, перемещаются под действием внешнего электрического поля и спустя очень малый промежуток времени создают поле, полностью компенсирующее внешнее. Поэтому напряженность электрического поля внутри проводника (при отсутствии тока) равна нулю.

Термин “диэлектрики” был введен Фарадеем. Диэлектриком является любая среда (газ, жидкость или твердое тело), в которой длительное время может существовать электрическое поле. В отличие от проводников в диэлектриках отсутствуют свободные электрические заряды. Т.е. диэлектриками называют тела в которых заряды не могут перемещаться из одной части в другую.