Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Лекции по физики Аксенова .doc
Скачиваний:
241
Добавлен:
15.03.2015
Размер:
3.44 Mб
Скачать

17.5 Закон Джоуля-Ленца в интегральной и дифференциальной формах

Если в проводнике течет постоянный ток и проводник остается неподвижным, то работа сторонних сил расходуется на его нагревание. Опыт показывает, что в любом проводнике происходит выделение теплоты, равное работе, совершаемой электрическими силами по переносу заряда вдоль проводника. Если на концах участка проводника имеется разность потенциалов  , тогда работу по переносу заряда q на этом участке равна 

По определению I= q/t. откуда q= I t. Следовательно 

Так как работа идет па нагревание проводника, то выделяющаяся в проводнике теплота Q равна работе электростатических сил

(17.13)

Соотношение (17.13) выражает закон Джоуля-Ленца в интегральной форме. Введем плотность тепловой мощности  , равную энергии выделенной за единицу время прохождения тока в каждой единице объема проводника

где S - поперечное сечение проводника,  - его длина. Используя (1.13) и соотношение  , получим

Но  - плотность тока, а  , тогда

с учетом закона Ома в дифференциальной форме  , окончательно получаем

(17.14)

Формула (17.14) выражает закон Джоуля-Ленца в дифференциальной форме: объемная плотность тепловой мощности тока в проводнике равна произведению его удельной электрической проводимости на квадрат напряженности электрического поля.

17.6. Разветвленные цепи. Правила Кирхгофа

Расчет разветвленных цепей упрощается, если пользоваться правилами Кирхгофа. Первое правило относится к узлам цепи. Узлом называется точка, в которой сходится более чем два тока. Токи, текущие к узлу, считается имеют один знак (плюс или минус), от узла - имеют другой знак (минус или плюс).

Первое правило Кирхгофа является выражением того факта, что в случае установившегося постоянного тока ни в одной точке проводника и ни на одном его участке не должны накапливаться электрические заряды и формулируется в следующем виде: алгебраическая сумма токов, сходящихся в узле, равна нулю

(17.15)

Второе правило Кирхгофа является обобщением закона Ома на разветвленные электрические цепи.

Рассмотрим произвольный замкнутый контур в разветвленной цепи (контур 1-2-3-4-1) (рис. 1.2). Зададим обход контура по часовой стрелке и применим к каждому из неразветвленных участков контура закон Ома.

Сложим эти выражения, при этом потенциалы сокращаются и получаем выражение

(17.16)

В любом замкнутом контуре произвольной разветвленной электрической цепи, алгебраическая сумма падений напряжений (произведений сил токов на сопротивление) соответствующих участков этого контура равна алгебраической сумме эдс входящих в контур.

При решении задач рекомендуется следующий порядок:

  1. Произвольно выбрать и обозначить на чертеже направление токов во всех участках цепи.

  2. Записать уравнение для всех n-1 узлов.

  3. Выделить произвольный контур в цепи и выбрать направление обхода. Записать второе правило Кирхгофа.

18. Классическая теория электропроводности

Почти сто лет тому назад П.Друде разработал теорию электро- и теплопроводности металлов. В теории Друде валентные электроны металла рассматривались как классический "электронный" газ (идеальный газ из электронов). Применение к этой модели основных положений элементарной молекулярно-кинетической теории привело к поразительным результатам. На основе этих представлений оказалось возможным объяснить закон Видемана-Франца, объяснить эффект Холла, возникновение контактной разности потенциалов, явление термоэлектронной эмиссии. Для всех перечисленных явлений удалось получить количественные зависимости между величинами, определяющими то или иное явление. Теория Друде не свободна от внутренних противоречий. Современная физика твердого тела базируется на представлениях квантовой механики, а для описания свойств электронного газа используется квантовая статистика, отличная от статистики Максвелла - Больцмана. Вместе с тем теория Друде не потеряла своей полезности: отдельные ее результаты поражают своей точностью, а методы теории Друде на редкость физически наглядны.

В рамках элементарной кинетической теории полагаем, что валентные электроны (электроны проводимости) металлов представляют собой одинаковые твердые сферы, двигаются они по прямым линиям до столкновения друг с другом, время контакта частиц пренебрежимо мало по сравнению с временем "свободного" движения.

Объемную концентрацию электронов проводимости можно оценить выражением:

(6.30)

     где  - объемная плотность металла (кг/м3), Z - валентность химического элемента, Na - число Авогадро, А - относительная атомная масса элемента.

      Заряд электрона е =-1,6*10-19 Кл, масса электрона me = 0,91*10-30 кг. Величину "е" ниже будем считать положительной, а знак заряда электрона будем учитывать непосредственно в формулах.

Плотность электронного газа:

(6.31)

значительно больше плотности обычных газов при нормальных условиях.

В теории Друде пренебрегают сильным электрон-электронным и электрон-ионным взаимодействием, полагая, что внутри металлического тела отдельный электрон практически ведет себя как свободная частица. Это дает нам право считать электрон "нейтральной" частицей при расчете взаимодействия ее с остальными частицами, но способной переносить заряд при расчете параметров электрического тока.

Рис. 6.1.

П.Друде полагал, что электроны в своем движении сталкиваются с атомами (ионами) кристаллической структуры металла (столкновения электрон-электрон значительно менее вероятны). Картина последовательных соударений электрона с атомами кристаллической решетки показана на рис. 6.1.

Современная теория оценивает вероятность такого механизма не очень высоко: рассеяние электронов имеет и другие механизмы. Поэтому не следует наглядную картину рис.6.1 понимать в буквальном смысле.

Будем считать, что отношение

(6.32)

     представляет собой вероятность соударения электрона с рассеивающим центром, где dt - промежуток времени,  - время релаксации или время свободного пробега. Предполагается, что величина  не зависит от пространственного положения электрона и не меняется от соударения к соударению. Предполагается также, что электроны находятся в состоянии теплового равновесия со своим окружением. Механизм соударения детализируется следующим образом: скорость электрона после соударения статистически не связана со скоростью электрона до соударения (электрон "забыл" свою предысторию), направление скорости после соударения - случайное, хаотическое, а ее величина соответствует той температуре, которая имеет место в окрестности точки соударения.