Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
глава 03.doc
Скачиваний:
287
Добавлен:
25.03.2015
Размер:
1.94 Mб
Скачать

3.4.3. Способы получения

важнейшие способы получения простых эфиров связаны с нуклеофильными реакциями спиртов и их производных (алкоголятов) — гл. 3.3.3.1 и 3.2.2.1. Этими способами являются:

  1. Межмолекулярная дегидратация спиртов:

2 R-ОН R-O-R

Однако такой способ в наибольшей степени подходит для получения симметричных эфиров, так как при попытке получить смешанный эфир ROR из спиртов R-ОН и R-ОН в реакционной смеси будут обнаружены значительные количества примесей эфиров состава ROR и RОR.

  1. Реакция Вильямсона — способ, пригодный для получения как симметричных, так и смешанных эфиров:

R-X + R-O¯Na+ R-O-R + NaX

  1. Для получения метилалкиловых эфиров применяют метилирование спиртов, для чего используется диметилсульфат (гл. 3.5.1) или диазометан.

R-ОН + (СH3)2SO4 + NaOH R-O-CH3 + NaCH3SO4 + H2O

диметилсульфат

диазометан

3.4.4. Циклические простые эфиры

Циклические простые эфиры содержат внутримолекулярную эфирную связь и по структуре представляют собой гетероциклические кислородсодержащие соединения. Они могут быть классифицированы в зависимости от размера цикла и числа кислородных атомов. Для названия циклических простых эфиров применяются заместительная, радикало-функциональная, заменительная номенклатуры (гл. 1.5) и номенклатура гетероциклических соединений. При этом для полиэфиров, т. е. для соединений, содержащих несколько атомов кислорода, применяются как заменительная номенклатура (гл. 1.5.3), так и номенклатура гетероциклических соединений (гл. 12.1).

По заместительной номенклатуре используется неотделяемая приставка эпокси- с указанием цифровыми локантами атомов углерода, связанных с кислородным мостиком.

По радикало-функциональной номенклатуре к названию двухвалентного углеводородного радикала, связанного с кислородным атомом, прибавляют используемое здесь название функционального класса «оксид».

Основой названия по заменительной номенклатуре является циклический углеводород (гл. 8.1) и используется заменительная приставка окса-.

По номенклатуре гетероциклических соединений название первого представителя циклических простых эфиров оксиран.

Примеры циклических простых моноэфиров и их названий:

.

1,2-эпоксиэтан, 1,2-эпоксибутан, 1,4-эпоксибутан,

этиленоксид, бутиленоксид, тетраметиленоксид,

оксиран этилоксиран тетрагидрофуран

3.4.4.1. Особенности строения и свойств 1,2-эпоксисоединений (оксиранов)

Эпоксиэтан представляет собой почти правильный треугольник со значительно деформированными валентными углами ( 60), сильно отличающимися от углов в обычных простых эфирах. Напомним, что в диалкиловых эфирах СОС составляет 109—112, а валентные углы насыщенного атома углерода также близки к 109.

Химические свойства оксиранов определяются наличием в молекуле полярных связей С–О, атома кислорода с неподелёнными парами электронов и угловым напряжением в трёхчленном цикле. Принципиальное отличие их превращений лишь в том, что реакции, характерные для простых эфиров, здесь протекают легко и сопровождаются раскрытием цикла, т.е. образуются продукты присоединения.

Реакции могут протекать и со слабыми нуклеофилами без катализатора, например с водой, но при повышенной температуре; с сильными нуклеофилами (амины, металлорганические соединения) взаимодействие протекает легко:

Кислотный катализ значительно увеличивает реакционную способность эпоксидов за счёт увеличения полярности связи С–О в исходном субстрате:

настолько, что присоединение воды и спиртов протекает легко.

В тех случаях, когда R и R являются разными углеводородными радикалами, направление расщепления эпоксидного цикла определяется механизмом реакции. Если механизм бимолекулярный, то нуклеофил атакует менее экранированный (замещённый) атом углерода. Если же в присутствии кислот может образоваться стабилизированный карбокатион, то реакция протекает по мономолекулярному механизму, первой стадией которой является разрыв одной из С–О-связей субстрата, и нуклеофил затем присоединяется по карбокатионному центру. Например:

Кислоты Льюиса в безводных средах вызывают димеризацию, олигомеризацию и полимеризацию 1,2-эпоксисоединений:

3.4.4.2. Способы получения 1,2-эпоксисоединений

Оксираны можно получить внутримолекулярным алкилированием -галогенозамещённых спиртов (галогенгидринов) и прямым окислением алкенов.

Кислотные свойства галогенгидринов повышены вследствие акцепторного влияния галогена, и в присутствии сильных оснований происходит образование аниона, в котором протекает нуклеофильное замещение:

Прямое окисление алкенов протекает по схеме:

Например, эпоксиэтан образуется при окислении этена кислородом воздуха на серебряном катализаторе при 520 К:

Эта реакция имеет большое промышленное значение. Мировое производство этиленоксида составляет 5 млн т в год.

Эпоксипроизводные других алкенов можно получить применением органических пероксикислот (RCOOOH) — реакция Прилежаева* (гл. 4.1.4.3, 6.4.6).

3.4.4.3. Краун-эфиры

Краун-эфиры — циклические полиэфиры, содержащие 9—60 атомов в цикле, в том числе от 3 до 20 эфирных атомов кислорода. Они открыты Чарльзом Педерсеном в 1960-х годах, за что ему в 1987 году (совместно с Дональдом Крамом и Жан-Мари Лёном) была присуждена Нобелевская премия.

Эти макроэфиры представляют собой бесцветные кристаллические или маслообразные вещества, устойчивые к действию кислот и оснований.

Ч. Педерсеном была предложена также и номенклатура краун-эфиров, общие правила которой заключаются в следующем. Название краун-эфира включает: 1) общее число атомов макроцикла, 2) термин «краун», 3) число атомов кислорода, то есть число эфирных звеньев в кольце краун-соединения. Имеющиеся в этой молекуле ароматические или циклогексановые кольца обозначают приставками бензо- и циклогексил-. Например:

дибензо-18-краун-6

Эти номенклатурные правила не всегда точно могут описать тип связей в соединении и положение заместителей, однако они очень удобны для обычных краун-эфиров с симметричными и сравнительно простыми структурами.

Самое важное свойство краун-эфиров — образование комплексов с металлами. Полость внутренней части, например, такой молекулы:

достаточна по размеру для того, чтобы там разместился ион калия, а наличие шести атомов кислорода обеспечивает возможность образования прочной системы координационных связей:

Чем ближе ионный диаметр металла к диаметру полости макроцикла, тем устойчивее комплекс. Так, 18-краун-6 больше подходит для ионов калия, а 15-краун-5 — для ионов натрия. Поэтому комплексы такого типа достаточно хорошо растворимы в органических растворителях.

В общем случае наличие полости в центре макроциклической полиэфирной системы обусловливает способность таких соединений поглощать неорганический катион, размер которого соответствует размеру этой полости, и удерживать его там за счёт сильных ион-дипольных взаимодействий положительного заряда иона с неподелёнными электронными парами шести атомов кислорода, обрамляющих полость.

Применение краун-эфиров в органических реакциях связано с образованием таких катионных комплексов, что делает возможным растворение неорганических солей в неполярных растворителях и способствует образованию несольватированного аниона. Это приводит к возрастанию основности аниона и, кроме того, за счёт малого размера несольватированный анион в качестве нуклеофила способен атаковать пространственно затруднённые реакционные центры.

В определённой степени краун-эфиры моделируют действие некоторых природных веществ (например, антибиотика пептидной природы валиномицина), облегчающих транспорт ионов через клеточные мембраны.

Синтезируют краун-эфиры алкилированием этиленгликоля, диэтиленгликоля НОСН2СН2ОСН2СН2ОН, триэтиленгликоля НОCН2СН2ОСН2СН2ОСН2СН2ОН подходящими реагентами, например, 2,2-дихлордиэтиловым эфиром O(CH2CH2Cl)2.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]