Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Физика, ч.3 КСчерн2.doc
Скачиваний:
89
Добавлен:
17.02.2016
Размер:
5.45 Mб
Скачать

1. Автоэлектронная (холодная) эмиссия электронов

В 1922 г. было открыто явление холодной электронной эмиссии из металлов под действием сильного внешнего электрического поля. График зависимости потенциальной энергии U электрона от координаты x изображен на рис. 2.8 При x < 0 – область металла, в котором электроны могут двигаться почти свободно. Здесь потенциальную энергию можно считать постоянной. На границе металла возникает потенциальный барьер, не позволяющий электрону покинуть металл; он может это сделать, лишь приобретя добавочную энергию, равную работе выхода A. За пределами металла (при x > 0) энергия свободных электронов не изменяется, поэтому при x > 0 график зависимости U(x) идет горизонтально.

Создадим вблизи металла сильное электрическое поле. Для этого возьмем металлический образец в форме острой иглы и подсоединим его к отрицательному полюсу источника напряжения (катоду); вблизи расположим другой электрод, к которому присоединим положительный полюс источника. При достаточно большой разности потенциалов между анодом и катодом можно создать вблизи катода электрическое поле с напряженностью порядка 108 В/м. Потенциальный барьер на границе металл – вакуум становится узким, электроны проходят сквозь него за счёт туннельного эффекта и выходят из металла.

Автоэлектронная эмиссия использовалась для создания электронных ламп с холодными катодами (сейчас они практически вышли из употребления), в настоящее время она нашла применение в туннельных микроскопах, изобретенных в 1985 г. Дж. Биннингом, Г. Рорером и Э. Руска.

Втуннельном микроскопе вдоль исследуемой поверхности перемещается зонд - тонкая игла. Игла сканирует исследуемую поверхность, находясь так близко от нее, что электроны из электронных оболочек (электронных облаков) поверхностных атомов за счет волновых свойств могут попасть на иглу. Для этого на иглу подаётся “плюс” от источника, а на исследуемый образец - “минус”. Туннельный ток пропорционален коэффициенту прозрачности потенциального барьера между иглой и поверхностью, который согласно формуле (2.67) зависит от ширины барьераl.

При сканировании иглой поверхности образца туннельный ток изменяется в зависимости от расстояния l, повторяя профиль поверхности. Прецизионные перемещения иглы на малые расстояния осуществляют с помощью пьезоэффекта, для этого закрепляют иглу на кварцевой пластине, которая расширяется или сжимается, когда к ней прикладывается электрическое напряжение. Современные технологии позволяют изготовить иглу столь тонкую, что на ее конце располагается один единственный атом.

Изображение формируется на экране дисплея ЭВМ. Разрешение туннельного микроскопа так высоко, что позволяет “увидеть” расположение отдельных атомов. На рис.2.10 приведено в качестве примера изображение атомной поверхности кремния.

2.Альфа-радиоактивность ( – распад ).В этом явлении происходит спонтанное превращение радиоактивных ядер, в результате которого одно ядро (его называют материнским) испускает– частицу и превращается в новое (дочернее) ядро с зарядом, меньшим на 2 единицы. Напомним, что– частица (ядро атома гелия) состоит из двух протонов и двух нейтронов.

Если считать, что-частица существует как единое образование внутри ядра, то график зависимости ее потенциальной энергии от координаты в поле радиоактивного ядра имеет вид, показанный на рис.2.11. Он определяется энергией сильного (ядерного) взаимодействия, обусловленного притяжением нуклонов друг к другу, и энергией кулоновского взаимодействия (электростатического отталкивания протонов).

В результате -частица в ядре, имеющая энергию Е, находится за потенциальным барьером. Вследствие ее волновых свойств есть некоторая вероятность того, что -частица окажется за пределами ядра.

3.Туннельный эффект в p-n - переходе используется в двух классах полупроводниковых приборов: туннельных и обращенных диодах. Особенностью туннельных диодов является наличие падающего участка на прямой ветви вольт-амперной характеристики - участка с отрицательным дифференциальным сопротивлением (Рис. 2.12.). В обращенных диодах наиболее интересным является то, что при обратном включении сопротивление оказывается меньше, чем при обратном включении.

Соседние файлы в предмете Физика