Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
26-01-2016_17-12-59 / Теория телетрафика А4.doc
Скачиваний:
589
Добавлен:
28.03.2016
Размер:
2.3 Mб
Скачать

8.3. Выбор структуры ступенчатой неполнодоступной схемы

При выборе структуры НС преследуют несколько целей. Среди них: получение максимальной пропускной способности при заданных параметрах схемы; уменьшение чувствительности к асимметрии нагрузки по нагрузочным группам; достижение гибкости при изменении параметров схемы; сокращение времени, необходимого на выбор структуры и ее осуществления, и др. В некоторых случаях соответствующим выбором структуры требуется увеличить переходное затухание между соединительными устройствами, подключенными к выходам НС.

Выбрать структуру ступенчатой НС (схему ступенчатого включения) – это значит определить взаимные соединения точек коммутации каждой из нагрузочных групп с учетом возможностей различных объединений, перехвата и сдвига. При определении вариантов структуры НС, отличающихся способами объединения точек коммутации без учета перехвата и сдвига, возникает задача отыскания значений структурных параметров g, k1, k2, ..., kn для заданных иd.

При составлении схемы ступенчатого включения надо стремиться к тому, чтобы параметр g выбирался из соотношения (8.3) с учетом того, чтоg – целое, положительное число. При этом принимаются во внимание удобства конструктивного разделения источников нагрузки на группы и преимущества таких значенийg, которые дают больше различных комбинаций запараллеливания выходов.

В случае двухгруппового включения (g=2) существует один набор значений структурных параметровk1 иk2, для которых справедливы соотношения

Для числа групп g>2 число вариантов структуры может быть большим. Пусть, например, требуется выбрать структуру ступенчатой НС, имеющей =27 выходов для включения соединительных устройств при доступностиd=10. В этом случае число группg должно лежать в пределах

Вуказанном диапазоне возможны значенияg=6, 7, 8, 9, 10. Учитывая, что при построении схемы без сдвига значения 6, 8 и 10 дадут больше возможностей запараллеливания выходов, чем значения 7 и 9, принимая во внимание, что приg=6 будет минимальный расход кабеля, а также считая, что в нашем примере число источников нагрузки таково, что оно удобно делится на шесть групп, выберемg=6 (шестигрупповое включение).

Таким образом, запараллеливанием 60 точек коммутации необходимо получить 27 выходов. В этом случае возможно образовать индивидуальные, парные, объединенные по три и объединенные по шесть точек выходы. Тогда общее число выходов будет

а доступность

Учитывая, что k1, k2, k3 иk6целые и положительные числа, каждое из которых не превышает 10, число вариантов структуры пучка будет конечным.

Вычитая равенство (8.7) из равенства (8.6), получим –d=5k1+2k2+k3=17. Из этого соотношения следует, чтоk13, т. е. дляk1 нужно рассматривать только значения 0, 1, 2, 3. Приk1 = 3 будет справедливо соотношение 2k2+k3=2. Поэтому дляk2возможны значения 0 и 1. Еслиk2=1, тоk3=0, аk6=6.

Таким образом, один из вариантов схемы, удовлетворяющий условиям (8.6) и (8.7), будет иметь следующие структурные параметры: k1=3; k2=1;k3=0;k6=6. Действуя указанным образом, можно получить еще одиннадцать вариантов, возможных при заданных условиях. Структурные параметры всех вариантов приведены в табл. 8.1. На рис. 8.2 показаны схемы вариантов структуры неполнодоступного пучка, представленных в табл. 8.1.

Таблица 8.1.

Структурные параметры

Величина параметра для номера варианта

1

2

3

4

5

6

7

8

9

10

11

12

k1

3

3

2

2

2

2

1

1

1

1

0

0

k2

1

0

3

2

1

0

6

5

4

3

8

7

k3

0

2

1

3

5

7

0

2

4

6

1

3

k6

6

5

4

3

2

1

3

2

1

0

1

0

Наилучшим вариантом ступенчатого включения при заданном качестве обслуживания и прочих равных условиях будет тот, который дает наибольшую пропускную способность или при котором вероятность потерь при заданной величине нагрузки будет наименьшей. При отыскании наилучшего варианта неполнодоступной схемы вообще и ступенчатого включения в частности следует иметь в виду, что не существует схемы с лучшей пропускной способностью при любых значениях нагрузки. При заданных параметрах g, d и неполнодоступной схемы в одной области нагрузки может оказаться предпочтительнее (обеспечивающей меньшие потери) одна структура НС, а в другой области нагрузки – другая. М. А. Шнепс показал, что для схем с упорядоченным исканием свободной линии при малых нагрузках выгоднее использовать ступенчатые схемы с индивидуальными выходами, а при больших нагрузках – равномерные схемы. Для повышения пропускной способности НС существенное значение имеют перехваченные включения, которые во многих случаях позволяют снизить потери. При этом перехваченные включения без сдвига имеют несколько большую пропускную способность, чем перехваченные включения со сдвигом. Однако при доступностяхd10 отрицательное влияние сдвига уже почти не сказывается.

В неполнодоступных схемах со случайным исканием наличие или отсутствие сдвига не влияет на пропускную способность НС. В настоящее время точное решение задачи определения пропускной способности возможно для схем с небольшим числом  выходов и связано с большим объемом вычислений, а приближенное решение задачи может быть осуществлено путем моделирования на универсальных ЭВМ или специализированных машинах телефонной нагрузки.

Использование методов статистического моделирования позволило установить существенную зависимость эффективности НС от распределения числа выходов (линий) по шагам искания. Поэтому при практическом построении ступенчатых НС в области потерь до 1% ЛОНИИС рекомендует распределять число линий по шагам искания в соответствии с оптимизирующими коэффициентами j, вычисленными А. М. Оганесяном. В этом случае число выходовj наj-м шаге искания определяется из соотношения

где суммарное число выходов в неполнодоступной схеме.

Для ступенчатой НС на =27 выходов с доступностьюd=10 распределение выходов по шагам искания приведено в табл. 8.2.

ТАБЛИЦА 8.2

Шаг исканий j

1

2

3

4

5

6

7

8

9

10

Сумма

Значение коэффициента j

0,19

0,13

0,12

0,11

0,1

0,09

0,08

0,07

0,06

0,05

1

Число выходов j

5,13

3,51

3,24

2,97

2,7

2,43

2,16

1,89

1,62

1,35

27

Округленное число выходов на каждом шаге

6

3

3

3

3

2

2

2

2

1

27

Округленное число выходов с учетом использования цилиндров

6

3

6

6

6

6

6

6

6

6

27

Указанное в третьей строке таблицы число выходов на каждом шаге искания получается дробным, и его округляют с учетом числа групп g ступенчатой НС и способом объединения точек коммутации. Будем считать, что в нашем случае число группg = 6, a сдвинутые соединения не применяются. Тогда для каждого шага искания с учетом симметрии схемы мы должны округлить значение числа выходов до чисел 6, 3, 2 или 1. Один из вариантов округления приведен в предпоследней строке табл. 8.2. Полученная с учетом оптимизирующих коэффициентов ступенчатая НС соответствует варианту 9 из табл. 8.1 и рис. 8.2.

При желании использовать сдвинутые соединения округления числа выходов можно производить с учетом образования цилиндров на двух или нескольких соседних шагах искания. При этом от каждого полного цилиндра получаем шесть выходов. В последней строке табл. 8.2 показан один из вариантов такого округления. В этом случае на шагах искания 3 и4 образуется двухшаговый цилиндр, на шагах5, 6, 7 и8, 9, 10 строятся трехшаговые цилиндры.

Пропускная способность ступенчатой НС, полученная с помощью оптимизирующих коэффициентов, зависит, естественно, как от правильности используемых коэффициентов, так и от способа округления числа выходов.