Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Теоретическая механика пособие Носова В.Н..doc
Скачиваний:
46
Добавлен:
16.11.2019
Размер:
18.82 Mб
Скачать

§ 6. Скорости и ускорения в общем случае движения твердого тела.

Перемещение любой точки тела, как было показано, скла­дывается из поступательного перемещения, равного перемеще­нию полюса, и вращательного вокруг оси, проходящей через полюс. Если рассматривать только бесконечно малые переме­щения тела, соответствующие переходу тела из данного поло­жения в бесконечно близкое, то с точностью до бесконечно малых высших порядков можно представить вращательное перемещение как векторное произведение вектора бесконечно малого поворота на вектор-радиус рассматриваемой точки по отношению к полюсу.

.

Так как , то , где -скорость полюса, разделив полученное выражение на , получим

. (2.30)

Эта основная формула кинематики твердого тела дает закон распределения скоростей в твердом теле в общем случае его движения.

Слагаемое определяет поступательную составляющую скорости, равную скорости по­люса, второе слагаемое представляет собой вращатель­ную составляющую скорости тела вокруг полюса О'.

Зная движение полюса и закон вращения тела вокруг по­люса, т. е. имея уравнения движения, можем по формуле (2.30) определить скорость любой точки тела. Проекции скорости на оси получим по общим правилам проектирования векторных выражений. Выпишем проекции скорости на неподвижные оси:

Здесь Переходим к рассмотрению вопроса о распределении уско­рений. Для этого продифференцируем левую и правую части (49) по времени; получим

или

(2.31)

Первое слагаемое определяет поступательное ускорение, равное ускорению полюса, а второе и третье: и - вращательную и центростремительную состав­ляющие ускорения вращения тела вокруг полюса. Таким образом, полу­чаем: ускорение точки твер­дого тела в общем случае его движения склады­вается из трех состав­ляющих: 1) поступатель­ного ускорения, одинакового в данный момент для всех точек тела и равного ускорению полюса; 2) вращательного ускорения вокруг полюса ( направлено по мгновенной оси и характеризует изменение угловой скорости по величине, - характеризует изменение угловой скорости по направлению и оно перпендикулярно мгновенной оси), 3) осе­стремительного ускорения, равного по величине произведению квадрата угловой скорости на кратчайшее расстояние точки до мгновенной оси вращения.

Глава 8. .Кинематика относительного движения точки и тела.

§ 1. Абсолютное, относительное и переносное движения.

Общая постановка задачи об относительном движении такова: движение точки определяется наблюдателями, связанными с двумя различными координатными системами (системами отсчета), причем эти системы движутся заданным образом друг по отношению к другу. Каждый наблюдатель определяет кинематические элементы движе­ния: траекторию, скорость и ускорение в своей системе отсчета. Ставится задача: зная движение одной системы отсчета по отно­шению к другой, найти связь между кинематическими элементами движения точки по отношению к каждой системе в отдельности. Предположим, что движение точки М в пространстве рассма­тривается в двух движущихся друг по отношению к другу системах координат: Oxyz, и (рис.41). В зависимости от содержания стоящей перед нами задачи одну из этих систем Oxyz примем за основную и назовем абсолютной системой и все кине­матические элементы его абсолютными. Другую систему назовем относительной и соответственно движение по отношению к этой системе, а также его кинематические элементы относитель­ными. Термины «абсолютный» и «относительный» имеют здесь ус­ловное значение; при рассмотрении движений может оказаться целе­сообразным то одну, то другую систему принимать за абсолютную. Элементы абсолютного движения будем обозначать подстрочным индексом «а», а относительного — индексом «r».

Введем понятие переносного движения, элементы которого будем обозначать подстрочным индексом «е». Переносным движением точки будем называть движение (по отношению к абсолютной системе) того пункта относительной системы, через который в рассматриваемый момент времени проходит движущаяся точка. Понятие переносного движения нуждается в пояснении. Необхо­димо четко различать точку, абсолютное и относительное движение которой рассматривается, от той, неизменно связанной с относи­тельной системой точки, через которую в данный момент проходит движущаяся точка. Обычно та и другая точка обо­значены одной буквой М, так как рисунок не передает движения; на самом деле это две различные точки, движущиеся друг по от­ношению к другу.

Остановимся на двух иллюстрациях понятия переносного дви­жения. Если человек идет по движущейся платформе, то можно рассматривать, во-первых, «абсолютное» движение человека по от­ношению к земле, во-вторых, «относительное» его движение по платформе. Переносным движением при этом будет являться движе­ние по отношению к земле того места платформы, по которому проходит в данный момент человек.

Возвращаясь к рис. 41, найдем за­висимость между вектор-радиусами точки М в разных системах координат. Если обозначить вектор-радиусы точки М через в абсолютной системе Oxyz и в отно­сительной системе , а вектор-радиус точки О' по отноше­нию к системе Oxyz через , то

(2.32)

Принципиальное отличие равенств (2.32) от имеющих тот же внеш­ний вид уравнений движения твердого тела заклю­чается в том, что в выражении (2.32) уже не постоянный вектор, определяющие выбор точки твердого тела, а вектор-функция времени, характеризующий относитель­ное движение точки М.