Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Теоретическая механика пособие Носова В.Н..doc
Скачиваний:
46
Добавлен:
16.11.2019
Размер:
18.82 Mб
Скачать

§ 4. Реакция оси вращающегося тела.

Рассмотрим ещё одну задачу на применение общих теорем динамики твёрдого тела: на вопросе об определении реакций в точках закрепления оси вращающегося твердого тела. Примем ось вращения за ось Oz, поместив начало системы осей , связанных с телом, в закрепленной точке (подпятник); в точке на расстоянии помещен подшипник оси вра­щения. Применим обе теоремы: освободив мысленно тело от опорных закреплений ,и введём в рассмот­рение искомые реакции и . Запишем теорему о движении центра масс

где - вектор угловой скорости тела, - скорость центра инерции, - его вектор-радиус. Вычислим кинетический момент (по второй формуле (3.78)

.

Спроектируем полученные уравнения на оси координат жестко связанные с Рис 59

телом, заметим, что . Тогда первая группа уравнений имеет вид

, , .

Перейдём ко второй группе и рассмотрим сначала второе слагаемое

,

после чего можем записать три уравнения

, ,

Рассматриваемую задачу можно решать и методом кинетостатики, для чего надо ввести силы инерции и моменты сил инерции ( на рисунке и ). Будем считать, что тело вращается под действием крутящего момента , тогда проектируя и на оси координат получаем шесть уравнений

,

,

, (3.81)

,

,

.

Первые пять уравнений служат для определения пяти реакций , а последнее для определения угловой скорости. Рассмотрим некоторые частные случаи.

1. Если тело не вращается, то мы имеем 5 уравнений статики, из которых определяем 5 статических реакций.

2. Интегрируя последнее уравнение (3.81), получаем . Тогда можно определить те динамические добавки к статическим реакциям, возникающие от вращения тела. Всегда можно выбрать оси таким образом, чтобы центр масс находился, к примеру, в плоскости Oyz, тогда и имеем

,

,

, (3.82)

.

3.Пусть ось вращения – центральная ось, тогда и , т.е. и или . Дополнительное воздействие вращающегося тела на ось вращения приводится к паре сил и величина момента этой пары равна . В этом случае говорят, что тело статически уравновешено.

4.Пусть ось вращения главная ось инерции в точке пересечения оси вращения и плоскости перпендикулярной оси вращения и проходящей через центр масс ( нецентральная ось не может быть главной во всех своих точках), тогда и пусть расстояние от выбранной точки пересечения до подшипников равно а и в ( ). Тогда уравнения (109) следует переписать так

,

,

, .

Из последних двух формул следует и

, , , .

Динамические реакции представляют параллельные силы, и в этом случае говорят, что тело динамически уравновешено.

§ 5. Задача о физическом маятнике.

К ак частный случай вращения тела вокруг неподвижной оси можно рассмотреть задачу о физическом маятнике. Физическим маятником называется твердое тело, вращаю­щееся вокруг неподвижной оси под действием силы тяжести. Рассмотрим случай, когда ось вращения горизонтальна. Проведем через центр тя­жести С тела плоскость, перпендикулярную к оси вращения. Точка пересечения О этой плоскости с осью вращения называется точкой подвеса. Примем эту точку за на­чало координат. Ось z направим по оси вращения, оси х

Рис 60 и у расположим в пло­скости, проходящей через центр тяжести и точку подвеса, перпендикулярно к оси вращения (рис. 60 ). Дифференциальные уравнения вращения тела вокруг оси z ( если ось z главная) согласно предыдущего параграфа запишутся следующим об­разом:

Так как в этом случае , где М — масса тела, а — расстояние от точки до центра тяже­сти (а = ОС), то дифференциальное уравнение движения тела примет вид

или

Рассмотрим случай малых колебаний, для которых можно принять . Тогда уравнение движения можно записать в следующей форме:

а его общее решение имеет вид

Отсюда следует, что угол φ изменяется по гармоническому за­кону с периодом колебаний, равным

Сравнивая дифференциальное уравнение движения матема­тического маятника с уравнением движения физического маятника, можно утвер­ждать, что математический маятник, имеющий длину

l= , (3.83)

будет двигаться так же, как и физический маятник. Величина l, определяемая формулой (3.83), называется приведенной длиной физического маятника. Представляя по формуле Гюйгенса мо­мент инерции тела относительно оси z в виде

где — радиус инерции тела относительно оси, проходящей через центр тяжести тела параллельно оси z, получим или

Полученное квадратное уравнение имеет два корня: и причём (по теореме Виетта) и . Откладывая l от точки подвеса в направлении центра тяжести, получим точку О (см. рис 60), которая на­зывается центром качания. Таким образом, если старый центр качания сделать новой точкой подвеса, то старая точка подвеса станет новым центром качания. Способ качания с использованием теории физиче­ского маятника используется для экспериментального определения момента инерции неоднородных твердых тел или тел сложной конфигурации.

Вопросы для самопроверки.

1. Напишите дифференциальное уравнение вращения тела вокруг неподвижной оси (ось вращения главная).

2. Что такое статическая и динамическая уравновешенность тела, вращающегося вокруг неподвижной оси?

3. Напишите дифференциальные уравнения плоского движения тела.

4. Напишите уравнения кинетостатики. Прокомментируйте введённые обозначения.

5 Чему равна сила трения цилиндра, катящегося по шероховатой поверхности (разберите два случая).

6. Сколько степеней свободы имеет свободное тело, какими обобщенными координатами можно описать его движение?

7. Чему равна приведённая длина однородного стержня длины l, колеблющегося вокруг горизонтальной оси ( разберите разные случаи крепления оси: в конце стержня, на расстоянии 1/4l от конца стержня и т.д.)