Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Физика лекции 2 семе стр.doc
Скачиваний:
628
Добавлен:
11.02.2015
Размер:
6.41 Mб
Скачать

Лекция 2«Теорема Гаусса для электрического поля»

План лекции

  1. Поток вектора напряженности электрического поля.

  2. Теорема Гаусса для электрического поля.

  3. Применение теоремы Гаусса для расчёта электрических полей.

    1. Поле бесконечной заряженной нити.

    2. Поле бесконечной заряженной плоскости. Поле плоского конденсатора.

    3. Поле сферического конденсатора.

Первую лекцию мы закончили расчётом напряжённости полей электрического диполя и бесконечно заряженной нити. В обоих случаях использовался принцип суперпозиции электрических полей. Теперь обратимся ещё к одному методу вычисления напряжённости, основанному на теореме Гаусса для электрического поля. В этой теореме речь идёт о потоке вектора напряжённости через произвольную замкнутую поверхность. Поэтому прежде чем преступить к формулировке и доказательству теоремы, обсудим понятие «поток вектора».

  1. Поток вектора напряжённости электрического поля

Выделим в однородном электрическом поле плоскую поверхность (рис. 2.1.). Эта поверхность — вектор, численно равный площади поверхностиSи направленный перпендикулярно поверхности

(2.1)

Рис. 2.1.

Но единичный нормальный вектор может быть направлен как в одну, так и в другую сторону от поверхности (рис. 2.2.).Произвольновыберем положительное направление нормали так, как это показано на рис. 2.1. По определениюпотоком вектора напряжённости электрического поля через выделенную поверхностьназывается скалярное произведение этих двух векторов:

(2.2)

Рис. 2.2.

Если поле в общем случае неоднородно, а поверхность S, через которую следует вычислить поток, не плоская, то эту поверхность делят на элементарные участки, в пределах которых напряжённость можно считать неизменённой, а сами участки — плоскими (рис. 2.3.) Поток вектора напряжённости через такой элементарный участоквычисляется по определению потока

(2.3)

Здесь En=E∙cos— проекция вектора напряжённости на направление нормали. Полный поток через всю поверхностьSнайдём, проинтегрировав (2.3) по всей поверхности

(2.4)

Рис. 2.3.

Теперь представим себе замкнутую поверхностьв электрическом поле. Для отыскания потока вектора напряжённости через подобную поверхность проделаем следующие операции (рис. 2.4.):

  1. Разделим поверхность на участки . Важно отметить при этом, что в случаезамкнутой поверхности положительной считается только «внешняя» нормаль.

  2. Вычислим поток на каждом элементарном участке :

Обратите внимание на то, что вектор «вытекающий» из замкнутой поверхности создаёт положительный поток, а «втекающий» — отрицательный.

  1. Для вычисления полного потока вектора напряжённости через всю замкнутую поверхность, все эти потоки нужно алгебраически сложить, то есть уравнение (2.3) проинтегрировать по замкнутойповерхностиS

(2.5)

Кружок на знаке интеграл означает, что интегрирование производится позамкнутой поверхности.

Рис. 2.4.

Напомним, что при графическом изображении полей, густота силовых линий в произвольной точке поля числено равна значению напряжённости поля в этой точке. Это означает, что

.

Тогда число силовых линий, пронизывающих поверхность dS,можно записать так

dN = EndS = EdS ∙ cos

Но ведь это определение потока вектора напряжённости через поверхность dS.

Таким образом, поток вектора напряжённости через поверхность dS численно равен числу силовых линий, пронизывающих эту поверхность(!).

Этот вывод справедлив и для потока электрического поля через замкнутую поверхность: этот поток будет равен алгебраической сумме силовых линий втекающих (–) и вытекающих (+) из замкнутой поверхности.

Теперь обратимся к теореме Гаусса.

Соседние файлы в предмете Физика