Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Biokhimia_Format_A5_Sm.pdf
Скачиваний:
2733
Добавлен:
31.03.2015
Размер:
7.03 Mб
Скачать

9. Обмен белков

263

нокислого, таким образом, очевидна. Оба цикла локализованы в митохондриях, что структурно обеспечивает их функциональную взаимосвязь.

Относительно большие затраты энергии, необходимые для течения реакций орнитинового цикла у млекопитающих, делает синтез мочевины необратимым процессом.

Основным итогом описанных многоступенчатых реакций является бесперебойная работа орнитинового цикла, в котором образуется мочевина, связывающая две молекулы аммиака.

Как уже говорилось, первая аминогруппа мочевины поставляется в виде свободного аммиака, образующегося в процессе окислительного дезаминирования глутаминовой кислоты в митохондриях печени. Полагают также, что аммиак для синтеза мочевины может доставляться в печень из различных тканей глутамином крови, который в печени расщепляется с образованием -ам миака и глутаминовой кислоты. Однако последний процесс более выражен в почечных канальцах большинства позвоночных; образующийся при этом аммиак выделяется из организма с мочой в виде аммонийных солей.

Вторая аминогруппа синтезируемой молекулы мочевины образуется за счет аспарагиновой кислоты.

В результате функционирования орнитинового цикла из аммиака, обладающего токсическими свойствами, образуется мочевина, являющаяся индифферентным для организма веществом. Последняя выводится с мочой в качестве главного конечного продукта белкового обмена. На долю мочевины приходится до 80-85% всего азота мочи.

9.4. Синтез аминокислот

Рассмотренные выше реакции превращения аминокислот по α-амино- группе, карбоксильной группе и радикалу способствуют переходу одних аминокислот в другие и тем самым играют большую роль в биосинтезе аминокислот.

Следует обратить внимание на резкое различие в способности к синтезу аминокислот растительными и животными организмами. В растениях осуществляется синтез самых разнообразных аминокислот. В растениях обнаружено более 150 различных аминокислот. Часто та или иная аминокислота присутствует в растениях строго определенного вида и ее наличие может служить -на дежным таксономическим признаком. В отличие от растений, животные синтезируют далеко не все аминокислоты. Из 19 постоянно встречающихся в белках аминокислот в животном организме синтезируется около половины. Синтезируемые аминокислоты получили название заменимых аминокислот, а не синтезируемые – незаменимых.

264 9. Обмен белков

Между различными видами животных есть некоторое отличие в перечне заменимых и незаменимых аминокислот. В большинстве случаев, и, в частности, у человека, к незаменимым аминокислотам относятся:

1)

валин,

5) метионин,

2)

лейцин,

6)

лизин,

3)

изолейцин,

7)

фенилаланин,

4)

треонин,

8)

триптофан,

а у некоторых видов животных, кроме того:

9)

гистидин

10) аргинин.

При превращении одних аминокислот в другие происходит образование заменимых аминокислот из незаменимых, но не наоборот.

В тканях млекопитающих возможен синтез только заменимых аминокислот. Незаменимые аминокислоты должны поступать с пищей. Животный организм способен синтезировать ряд незаменимых аминокислот только из соответствующих им α-кетокислот(или α-оксикислот). Однако животный организм не способен синтезировать α-кетокислоты, соответствующие незаменимым аминокислотам. Если они возникают в животных тканях, то это происходит в результате дезаминирования или трансаминирования самих незаменимых аминокислот, поступающих вместе с пищей.

Следовательно, животный организм не может обойтись без поступления с пищей незаменимых аминокислот в силу того, что в процессе обмена веществ не происходит новообразования α-кетокислот, необходимых для синтеза той или иной незаменимой аминокислоты.

Если в пище недостаточно содержание одной или нескольких незаменимых аминокислот, то нормальное развитие животного организма нарушается, т.к. биосинтез белка не обеспечен рядом аминокислот. Заменимые аминокислоты синтезируются в тканях млекопитающих разными путями. Исходными веществами при синтезе заменимых аминокислот служат метаболиты лимоннокислого цикла, продукты распада углеводов и незаменимые аминокислоты.

В большинстве случаев предшественником углеродного скелета заменимой аминокислоты служит соответствующая α-кетокислота, происходящая в конечном итоге от того или иного промежуточного продукта лимоннокислого цикла. Аминогруппы поступают обычно от глутаминовой кислоты в результате реакции переаминирования.

Глутаминовая кислота образуется в результате восстановительного аминирования α-кетоглутаровой кислоты, являющейся промежуточным продуктом лимоннокислого цикла, под влиянием высокоактивной при рН=7 глутаматдегидрогеназы. В качестве источника восстановительных эквивалентов в глутаматдегидрогеназной реакции используется НАДФ.Н2.

9. Обмен белков

265

Восстановительное аминирование α-кетоглутаровой кислоты рассматривается как важнейший вид первичного синтеза аминокислот. Другим значимым путем первичного синтеза аминокислот служит прямое аминирование непредельных кислот, например, аминирование фумарата:

COOH

COOH

 

 

 

 

 

 

 

 

 

 

 

 

CH + NH

 

 

 

 

 

 

аспартатаммиаклиаза HC

 

 

NH2

 

 

3

 

 

 

CH

 

CH2

 

 

 

COOH

 

 

 

 

COOH

фумаровая кислота

аспарагиновая

(фумарат)

кислота

 

 

 

 

Восстановительное аминирование α-кетоглутаровой кислоты протекает в матриксе митохондрий, включает две стадии и представляет собой обратную реакцию рассмотренной выше реакции окислительного дезаминирования аминокислот, но коферментом служит НАДФ, а не НАД.

COOH

 

COOH

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CH2

 

 

 

CH

 

 

 

 

 

 

 

CH

+ NH

глутаматдегидрогеназа

 

2

+

H2O

 

 

 

 

 

2

3

H C

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

CO

 

 

C

NH

 

 

 

COOH

 

COOH

 

 

 

 

- кетоглутарат

 

иминоглутаровая кислота

 

 

 

COOH

 

 

 

 

COOH

 

 

 

 

 

 

 

 

CH2

 

 

 

 

H C

 

H2C

+ НАДФ.Н 2

глутаматдегидрогеназа

2

 

 

 

 

+ НАДФ

CH

 

 

 

 

 

C

NH

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

HC

 

 

 

NH2

 

 

 

 

 

 

 

 

 

 

COOH

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

COOH

 

 

 

 

 

 

 

глутаминовая кислота

 

 

 

 

 

 

 

 

 

 

(глутамат)

Эта реакция имеет фундаментальное значение в биосинтезе всех аминокислот у всех организмов, т.к. она служит основным значимым путем образования α-аминокислоты (глутамата) непосредственно с использованием аммиака, а глутамат (глутаминовая кислота) служит при биосинтезе других аминокислот донором аминогрупп в реакциях переаминирования. Сам глутамат служит предшественником глутамина и пролина. Аланин и аспарагиновая кислота образуются путем переаминирования соответственно из пирувата и -ок салоацетата (ЩУК). Тирозин получается в результате гидроксилирования фенилаланина. Цистеин синтезируется из метионина и серина в сложной после-

266

9. Обмен белков

довательности реакций, в которой промежуточными продуктами служат S-аденозилметионин и цистатионин. Углеродный скелет серина происходит из 3-фосфоглицерата. Серин, в свою очередь, служит предшественником глицина.

9.5. Аминокислоты как лекарственные вещества

Ведущее значение обмена белков для нормальной жизнедеятельности организма определило использование некоторых белковых веществ, аминокислот и пептидов с лечебной целью в качестве лекарственных препаратов. Среди лекарственных препаратов, представляющих в химическом отношении аминокислоты или содержащие аминокислоты, следует назвать глутаминовую кислоту, метионин, гистидин, цистеин, гаммалон, вицеин, церебролизин, а также гидролизаты белков– гидролизин, аминопептид, аминокровин, фибриносол, гидролизат казеина.

Первые два препарата являются фармакопейными препаратами. Глутаминовая кислота занимает в процессах азотистого обмена одно из ведущих мест. В процессе обмена веществ глутаминовая кислота непрерывно образуется из

других аминокислот и одновременно служит источником аминогрупп при биосинтезе других аминокислот. Глутаминовая кислота способствует обезвреживанию аммиака. Из аммиака и глутаминовой кислоты образуется безвредный для организма глутамин, обеспечивающий выведение аммиака почками в виде аммонийных солей.

Взначительных количествах глутаминовая кислота содержится в белках серого и белого вещества мозга, она участвует в его белковом и углеводном обмене, стимулирует окислительные процессы. Связывание и обезвреживание аммиака, образуемого в мозговой ткани глутаминовой кислотой, имеет важное значение для нормальной деятельности центральной нервной системы. Глутаминовая кислота способствует также синтезу ацетилхолина и АТФ, переносу ионов калия. Как часть белкового компонента миофибрилл, она играет важную роль в деятельности скелетной мускулатуры.

Вмедицинской практике глутаминовая кислота находит применение главным образом при лечении заболеваний центральной нервной системы: эпилепсии, психозов, реактивных состояний, депрессии и других психических

инервных заболеваний. В детской практике препарат применяют при задерж-

ке психического развития различного происхождения, полиомиелите. Глутаминовая кислота оказывает положительный эффект также у больных прогрессивной мышечной дистрофией, при нейротоксических явлениях. Назначают глутаминовую кислоту внутрь, реже – внутривенно. Используется в качестве препарата также кальциевая и магниевая соль глутаминовой кислоты.

9. Обмен белков

267

Метионин относится к числу незаменимых аминокислот, необходимых для поддержания роста и азотистого равновесия организма. Особое значение метионина обусловлено его участием в процессе переметилирования, как основного донатора метильных групп, с чем связан его липотропный эффект.

Метионин участвует в синтезе адреналина, креатина и других биологически важных соединений. Он активирует действие гормонов, витаминов (В12, аскорбиновой и фолиевой кислот), ферментов. Путем метилирования и транссульфирования метионин обезвреживает различные токсические продукты.

Применяют метионин для лечения и предупреждения заболеваний и токсических поражений печени: цирроза печени, поражений печени мышьяковистыми препаратами, хлороформом, бензолом и др. токсическими веществами, при – хроническом алкоголизме, диабете и др. Метионин применяют также для лечения дистрофии, возникающей в результате белковой недостаточности после дизентерии и др. хронических инфекционных заболеваний. Введение метионина больным атеросклерозом приводит к снижению содержания в крови холестерина и повышению содержания фосфолипидов. Метионин назначают внутрь.

Гистидин, также являющийся незаменимой аминокислотой, содержится в разных органах, входит в состав карнозина – азотистого экстрактивного вещества мышц. В организме гистидин подвергается декарбоксилированию, в результате чего образуется гистамин– соединение, обладающее выраженной биологической активностью.

Гистидин в виде гистидина гидрохлорида применяется для лечения гепатитов, язвенной болезни желудка и двенадцатиперстной кишки. Имеются данные о благоприятном влиянии препарата на липопротеиновый обмен у больных атеросклерозом. Препарат вводят внутримышечно.

Цистеин в качестве характерной особенности химического строения -со держит в своей молекуле сульфгидрильную группу, отличающуюся высокой реакционной способностью. При определенных условиях цистеин легко отдает водород и тогда две молекулы цистеина образуют через дисульфидную связь новую аминокислоту – цистин. Взаимный переход цистеина в цистин и обратно представляет собой окислительно-восстановительный процесс, что имеет важное значение в регуляции обмена веществ. Цистеин также участвует в реакциях переаминирования и обмена серы в организме. Имеются данные, что цистеин участвует в обмене веществ хрусталика глаза и что изменения, происходящие при катаракте, связаны с нарушением содержания в хрусталике этой аминокислоты. В связи с этим предложено применять цистеин для задержания развития катаракты и просветления хрусталика при начальных стадиях возрастной, миопатической, лучевой и контузионной катаракты. Применяют цистеин в виде водного раствора для глазных ванночек или с помощью электрофореза.

268

9. Обмен белков

Гаммалон (ГАМК, γ-аминомасляная кислота), по современным данным является химическим фактором, участвующим в процессе центрального торможения в головном мозге. Как лекарственное вещество γ-аминомасляная кислота применяется при патологических состояниях, связанных с нарушением функций центральной нервной системы: при ослаблении памяти, атеросклерозе мозговых сосудов и нарушениях мозгового кровообращения, после перенесенных травм и параличей, при головных болях, бессоннице, головокружениях, связанных с гипертонической болезнью, при отсталости умственного развития у детей. Применяют внутрь и внутривенно.

Вицеин представляет собой комбинированный препарат, содержащий цистеин, гликокол, глутаминовую кислоту, натриевую соль АТФ, тиамина бромид, никотиновую кислоту, иодид калия, хлорид кальция и магния, натрий хлор. Применяют в виде капель. Показания те же, что и для цистеина.

Церебролизин является гидролизатом мозгового вещества, содержащим, главным образом, аминокислоты. Применяют при заболеваниях, сопровождающихся нарушением функций центральной нервной системы(после перенесенного энцефалита, операций на головном мозге, при отсталости умственного развития у детей, при расстройствах памяти и др.). Вводят внутримышечно.

Гидролизаты белков– гидролизин, гидролизат казеина, аминопептид, аминокровин, фибриносол применяют в качестве парентерального питания больных.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]