Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Shanley T.EISA system architecture.1995.pdf
Скачиваний:
95
Добавлен:
23.08.2013
Размер:
2.8 Mб
Скачать

Chapter 5: Detailed Description of EISA Bus

Bus Cycle Timing Signal Group

Under the EISA specification, the signals described in table 5-4 were added to define the address and data portions of the bus cycle, as well as the end of the bus cycle.

 

 

 

 

 

Table 5-4. EISA Bus Cycle Timing Signals

 

 

Signal

 

 

 

 

 

 

 

 

 

Name

 

 

Full Name

 

 

 

Description

 

 

 

 

 

 

 

 

 

 

 

 

START#

 

 

Start phase

 

 

 

Every EISA bus cycle consists of two phases: the start

 

 

 

 

 

 

 

 

 

and command phases. The address and the M/IO#

 

 

 

 

 

 

 

 

 

control line are output by the current bus master and

 

 

 

 

 

 

 

 

 

decoded by the target slave during the start phase.

 

 

 

 

 

 

 

 

 

The start phase corresponds to address time and is

 

 

 

 

 

 

 

 

 

therefore one BCLK is duration.

 

 

 

 

 

 

 

 

 

 

 

 

CMD#

 

 

Command

 

 

 

Every EISA bus cycle consists of two phases: the start

 

 

 

 

 

phase

 

 

 

and command phases. The data is transferred during

 

 

 

 

 

 

 

 

 

the command phase. CMD# is asserted at the trailing

 

 

 

 

 

 

 

 

 

edge of the START# signal (trailing edge of Ts) and

 

 

 

 

 

 

 

 

 

stays asserted until the end of the bus cycle. When a

 

 

 

 

 

 

 

 

 

bus cycle has wait states inserted, the CMD# signal

 

 

 

 

 

 

 

 

 

remains asserted for multiple cycles of BCLK.

 

 

 

 

 

 

 

 

 

 

 

 

EXRDY

 

 

EISA Ready

 

 

 

Deasserted by an EISA slave to request the insertion of

 

 

 

 

 

 

 

 

 

wait states in the current bus cycle. It is sampled on

 

 

 

 

 

 

 

 

 

each falling edge of BCLK after the CMD# line is as-

 

 

 

 

 

 

 

 

 

serted. When sampled asserted, the bus cycle will be

 

 

 

 

 

 

 

 

 

terminated at the next rising edge of BCLK.

 

Lock Signal

The LOCK# signal is asserted by the current bus master to prevent other bus masters from arbitrating for the use of the bus. This allows the current bus master to complete one or more memory accesses prior to surrendering control to another bus master. The purpose of the bus lock capability is to prevent two bus masters that share a memory location as a software semaphore from becoming de-synchronized with each other.

49

EISA System Architecture

Slave Size Signal Group

When the current bus master addresses an EISA-style slave, the slave asserts one of these two signals to indicate the data paths it can use and to signal that it is an EISA-style slave. Table 5-5 describes these two signals.

Table 5-5. The EISA Type/Size Lines

 

Signal

 

 

 

 

 

 

 

 

Name

 

 

Full Name

 

 

Description

 

 

 

 

 

 

 

 

 

 

 

EX32#

 

 

EISA Slave Size 32

 

 

When a 32-bit EISA slave decodes its address, it

 

 

 

 

 

 

 

 

asserts EX32# to inform the current bus master

 

 

 

 

 

 

 

 

that it can handle 32-bit transfers.

 

 

 

 

 

 

 

 

 

 

 

EX16#

 

 

EISA Slave Size 16

 

 

When a 16-bit EISA slave decodes its address, it

 

 

 

 

 

 

 

 

asserts EX16# to inform the current bus master

 

 

 

 

 

 

 

 

that it can handle 16-bit transfers.

 

AEN Signal

The following paragraph describes the manner in which the AEN signal is used under the ISA specification.

When either the master or slave DMA Controller (DMAC) on the system board becomes bus master, it asserts AEN as a substitute for BALE, indicating that a valid memory address is present on the address bus. Memory cards then decode the address on the address bus. I/O cards also monitor the AEN signal line and ignore the address on the bus when AEN is asserted. This is necessary because the DMAC asserts either the IORC# or IOWC# line and I/O devices think that there is an I/O address on the bus when there really isn’t.

It should be noted that AEN has another, special, usage in the EISA environment. This additional function is discussed in the chapter entitled “EISA System Configuration.”

EISA Connector Pinouts

The EISA connector is an extended version of the ISA connector. The ISA connector is divided into an 8-bit connector and a 16-bit extension. In figure 5-4, the upper half of the EISA connector, rows A and B, comprise the 8-bit portion that is compatible with the IBM PC and XT expansion connector and the 8-bit

50

Chapter 5: Detailed Description of EISA Bus

portion of the connector found in the IBM PC/AT. On the lower half of the EISA connector in the figure, rows C and D comprise the 16-bit portion that is compatible with the 16-bit extension to the 8-bit connector found in the IBM PC/AT. The pins on the EISA connector are arranged in eight rows. Rows A, B, C, and D comprise the ISA group, while rows E, F, G and H comprise the EISA group.

51

EISA System Architecture

F1

GND

F2

+5

F3

+5

F4

xxxxxx

F5

xxxxxx

F6

key

F7

xxxxxx

F8

xxxxxx

F9

+12

F10

M/IO#

F11

LOCK#

F12

Reserved

F13

GND

F14

Reserved

F15

BE3#

F16

key

F17

BE2#

F18

BE0#

F19

GND

F20

+5

F21

LA29#

F22

GND

F23

LA26#

F24

LA24#

F25

key

F26

LA16

F27

LA14

F28

+5

F29

+5

F30

GND

F31

LA10

H1 LA8

H2 LA6

H3 LA5

H4 +5

H5 LA2

H6 key

H7 SD16

H8 SD18

H9 GND

H10 SD21

H11 SD23

H12 SD24

H13 GND

H14 SD27

H15 key

H16 SD29

H17 +5

H18 +5

H19 MAKx#

F B E A

B1 GND

B2

RESDRV

B3

+5

B4

IRQ9

B5

-5

B6

DRQ2

B7

-12

B8

NOWS#

B9

+12

B10

GND

B11

SMWTC#

B12

SMRDC#

B13

IOWC#

B14

IORC#

B15

DAK3#

B16

DRQ3

B17

DAK1#

B18

DRQ1

B19

REFRESH#

B20

BCLK

B21

IRQ7

B22

IRQ6

B23

IRQ5

B24

IRQ4

B25

IRQ3

B26

DAK2#

B27

TC

B28

BALE

B29

+5

B30

OSC

B31

GND

D1

M16#

D2

IO16#

D3

IRQ10

D4

IRQ11

D5

IRQ12

D6

IRQ15

D7

IRQ14

D8

DAK0#

D9

DRQ0

D10

DAK5#

D11

DRQ5

D12

DAK6#

D13

DRQ6

D14

DAK7#

D15

DRQ7

D16

+5

D17

MASTER16#

D18 GND

H D G C

E1

CMD#

E2

START#

E3

EXRDY

E4

EX32#

E5 GND

E6

key

E7

EX16#

E8

SLBURST#

E9

MSBURST#

E10

W/R#

E11

GND

E12

Reserved

E13

Reserved

E14

Reserved

E15

GND

E16

key

E17

BE1#

E18

LA31#

E19

GND

E20

LA30#

E21

LA28#

E22

LA27#

E23

LA25#

E24

GND

E25

key

E26

LA15

E27

LA13

E28

LA12

E29

LA11

E30

GND

E31

LA9

G1 LA7

G2 GND

G3 LA4

G4 LA3

G5 GND

G6 key

G7 SD17

G8 SD19

G9 SD20

G10 SD22

G11 GND

G12 SD25

G13 SD26

G14 SD28

G15 key

G16 GND

G17 SD30

G18 SD31

G19 MREQx#

A1 CHCHK#

A2 SD7

A3 SD6

A4 SD5

A5 SD4

A6 SD3

A7 SD2

A8 SD1

A9 SD0

A10 CHRDY

A11 AENx

A12 SA19

A13 SA18

A14 SA17

A15 SA16

A16 SA15

A17 SA14

A18 SA13

A19 SA12

A20 SA11

A21 SA10

A22 SA9

A23 SA8

A24 SA7

A25 SA6

A26 SA5

A27 SA4

A28 SA3

A29 SA2

A30 SA1

A31 SA0

C1 SBHE#

C2 LA23

C3 LA22

C4 LA21

C5 LA20

C6 LA19

C7 LA18

C8 LA17

C9 MRDC#

C10 MWTC#

C11 SD8

C12 SD9

C13 SD10

C14 SD11

C15 SD12

C16 SD13

C17 SD14

C18 SD15

Figure 5-4. The EISA Connector Pin Assignments

52

Соседние файлы в предмете Электротехника