Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Fizika_chast_3 / Пособие Агеева О.С. и др.Квант.механика и ФТТ.doc
Скачиваний:
375
Добавлен:
17.02.2016
Размер:
3.87 Mб
Скачать

2.2. Энергетические зоны кристаллов. Металлы. Полупроводники. Диэлектрики

Энергетическая диаграмма изолированного атома представляет собой набор дискретных энергетических уровней. Твердое тело, кристалл, является единой системой множества взаимодействующих атомов.

Поле кристаллической решетки обладает периодичностью. Ограниченность размеров кристалла и периодичность поля внутри кристалла приводят к тому, что энергетические уровни, соответствующие изолированному атому, расщепляются и образуют энергетические зоны, состоящие из отдельных, близко расположенных уровней, число которых соответствует числу атомов в данном кристалле (рис 2.1).

Рис. 2.1. Энергетические уровни изолированного атома

Рис. 2.2. Образование энергетических зон

в кристалле

r- расстояние между атомами;

d- период кристаллической решетки

Энергетическую зону, которая образовалась в результате расщепления одного уровня атома, называют разрешенной зоной. Иногда при расщеплении уровней происходит перекрытие двух или более соседних зон - такуюгибридную зонутакже будем называть разрешенной зоной. Верхний энергетический уровень разрешенной зоны называютпотолком зоны, а нижний –дном зоны. Энергетические уровни валентных электронов при расщеплении образуютвалентную зону. Пустые уровни, соответствующие возбужденным состояниям атома, расщепляясь, образуют одну или несколько свободных зон. Разрешенные зоны чередуются сзапрещенными зонами, т.е. интервалами энергии, в которых нет энергетических уровней.

Различные энергетические уровни атома расщепляются в электромагнитном поле кристалла неодинаково. Сильнее всего расщепляются уровни валентных электронов, уровни внутренних электронов испытывают настолько слабое расщепление, что им можно пренебречь. Так как электрические, оптические и другие свойства кристаллов определяются состояниями валентных электронов, то на энергетических диаграммах принято изображать валентную зонуи ближайшую к нейсвободную зону.

Ширина энергетических зон определяется видом материала и строением кристалла. Валентные зоны большинства твердых тел имеют ширину несколько электрон-вольт. Внутри расположены N энергетических уровней, на которых могут располагаться по два электрона с антипараллельными спинами. В кристалле размером 1 см3содержитсяN 1022атомов, следовательно, расстояние между уровнями внутри зоны порядка 10-22эВ. Это расстояние столь мало по сравнению с энергией теплового движения (имеющей величину порядкаkT0,025эВ при комнатной температуре), что зоны можно считать практически непрерывными (рис.2.3). Поэтому требуется ничтожная энергия, чтобы перевести электрон в пределах зоны с одного уровня на соседний свободный уровень.

Сравним два образца одного и того же вещества, один из которых в два раза больше другого. Первый из них содержит в два раза больше электронов, энергетические уровни внутри разрешенной зоны в первом образце расположены в два раза ближе друг к другу, но края зон будут располагаться одинаково по шкале энергий.

В зависимости от степени заполне-

ния валентной зоны электронами и ши-рины запрещенной зоны возможны три случая.

1 случай.Электроны заполняют валентную зону не полностью. Так как энергетические расстояния между уровнями в зоне малы, то электроны легко могут быть переведены на более высокие свободные уровни как за счет энергии теплового движения, так и под действием электрического поля. Электроны валентной зоны такого кристалла будут участвовать в проводимости.

Кристалл с частично заполненной электронами валентной зоной будет представлять собой металл.Частичное заполнение валентной зоны наблюдается в тех случаях, когда разрешенная зона образовалась из уровней атома, на которых находился только один электрон, т.е. уровни были заполнены электронами наполовину, либо, когда имело место перекрытие зон.

а)

б)

в)

Рис. 2.4. Энергетические диаграммы кристаллов при Т=0:

а) металла, б) полупроводника, в) диэлектрика

Здесь Т-температура, EF - уровень Ферми, Е – ширина запрещенной зоны, Ес –дно зоны проводимости, Еv -потолок валентной зоны

2 случай.Уровни валентной зоны полностью заняты электронами. Чтобы электрон участвовал в проводимости, его следует перевести из валентной зоны в свободную. Для этого необходимо сообщить ему энергию не меньшую, чем ширина запрещенной зоны. Если ширина запрещенной зоны невелика, энергии теплового движения будет достаточно, чтобы перевести часть электронов с верхних уровней валентной зоныв свободную зону, которую называютзоной проводимости.Одновременно в валентной зоне образуются дырки. Вещество с такими свойствами являетсяполупроводником.

3 случай. Уровни валентной зоны полностью заняты электронами, но ширина запрещенной зоны велика. В этом случае тепловое движение не сможет перебросить электроны в зону проводимости. В таком кристалле отсутствуют свободные носители заряда, кристалл не проводит ток и является диэлектриком.

С точки зрения зонной теории разделение неметаллических материалов на полупроводники и диэлектрики достаточно условно: вся разница между ними заключается в величине ширины запрещенной зоны. Нельзя установить также точное граничное значение ширины запрещенной зоны, которое определяет класс полупроводников от класса диэлектриков. Можно лишь указать, что у полупроводников ширина запрещенной зоны не превышает 2 или 3 эВ. Иногда классификацию твердых тел проводят по величине удельного сопротивления:

Таблица 2.1