Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Fizika_chast_3 / Пособие Агеева О.С. и др.Квант.механика и ФТТ.doc
Скачиваний:
375
Добавлен:
17.02.2016
Размер:
3.87 Mб
Скачать

4.6. Диффузия носителей заряда.

4.6.1. Диффузионная длина

Если в полупроводнике носители заряда распределены неравномерно, возникает диффузия носителей заряда. Она может быть описана известным законом Фика:

Jp = - Dp grad p (4.6.1)

или

Jn = - Dn grad n. (4.6.2)

Здесь Jp, Jn_ плотности потоков дырок, электронов, равные числу частиц, пересекающих в единицу времени единичную площадку, перпендикулярную направлению градиента концентрации;Dp, Dn– коэффициенты диффузии.

Подвижные носители заряда являются заряженными частицами, поэтому их направленное движение является электрическим током. Плотность тока может быть найдена путем умножения (4.6.1) на элементарный заряд q или (4.6.2) – на(-q)

jp = - q Dp grad p (4.6.3)

или

jn = q Dn grad n. (4.6.4)

Если в какой-либо части полупроводника создана избыточная концентрация неравновесных носителей заряда, то одновременно с процессом диффузии происходит их рекомбинация. Поэтому избыточная концентрация уменьшается в направлении от места источника этой избыточной концентрации. Найдем закон изменения избыточной концентрации носителей, например дырок, от расстояния.

В уравнение (4.5.1) – уравнение непрерывности – добавим еще одно слагаемое:

. (4.6.5)

В стационарном случае

, (4.5.6)

тогда подставим (3) в(5) и приравняем к нулю

; (4.5.7)

после преобразований получим

. (8)

Здесь - оператор Лапласа.

В одномерном случае оператор Лапласа равен d2 p/dx2. Тогда

. (4.5.9)

Решение этого уравнения имеет вид

. (4.5.10)

Коэффициенты А1иА2найдем из граничных условий.

При , откудаА1=0;

при ,откудаА2= p0.

Окончательно получим

(4.5.11)

или

. (4.5.12)

Здесь - диффузионная длина.

Расстояние, на котором пpи одномерной диффузии в полупpоводнике без электрического поля в нем избыточная концентpация носителей заряда уменьшается вследствиерекомбинации в е раз, называют диффузионной длиной. Можно показать, что диффузионная длина pавна среднему расстоянию, на которое диффундируют носители за вpемя жизни.

Замечание:не следует путать диффузионную длину ни со средней длиной свободного пробега носителей, которая определяется как среднее расстояние, проходимое носителем между двумя последовательными актами рассеяния, ни с длиной волны де Бройля, равнойh/mv.

Диффузионная длина очень важна, её вносят в марку материала.

Пример: ГЭС 1,0/0,5 - германий электронный, легированный сурьмой, с удельным сопротивлением 1,0 Ом.см и диффузионной длиной 0,5 мм; или ЭКДБ 10/1,0 - эпитаксиальный кремний, легированный бором с удельным сопротивлением 10 Ом.см и диффузионной длиной 1 мм.

4.6.2. Соотношение Эйнштейна между подвижностью и коэффициентом диффузии носителей заряда

Рассмотрим дырочный полупроводник, помещенный в электрическое поле, напряженность которого. Дырки в таком полупроводнике сместятся в направлении поля, возникнет градиент концентрации дырок, и в полупроводнике установится равновесие, при котором ток отсутствует.

Рассмотрим одномерную задачу. Плотность тока можно представить как сумму диффузионной и дрейфовой составляющих, а затем приравнять эту сумму к нулю. Тогда

; (4.6.1)

. (4.6.2)

Напряженность электрического поля можно представить так:

, (4.6.3)

где -потенциал.

Потенциальная энергия дырки равна q.При отсутствии вырождения распределение дырок в потенциальном поле подчиняется закону Больцмана

, (4.6.4)

откуда

. (4.6.5)

Подставляя (4.6.3) и (4.6.5) в (4.6.2), получаем

. (4.6.6)

Аналогичное выражение можно получить и для электронов:

. (4.6.7)

Уравнения, связывающие коэффициент диффузии носителей заpяда, подчиняющихся статистике Максвелла-Больцмана, с их дрейфовой подвижностью в условиях термодинамического равновесия носят название соотношений Эйнштейна.

Замечание:Соотношение Эйнштейна применимо и к неравновесным носителям, что подтверждено экспериментально.