Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Yanko_E_A.doc
Скачиваний:
716
Добавлен:
14.03.2016
Размер:
14.43 Mб
Скачать
    1. Электрохимия процесса электролиза

Чтобы вызвать катодный разряд положительно заряженного иона, ему необходимо придать дополнительный отрицательный потенциал. Потенциал, требуемый для выделения на катоде того или иного металла (он носит название катодного потенциала), зависит от природы катиона и его концентрации. Подобные рассуждения можно привести и для анодного процесса и ввести понятие анодного потенциала.

Известные химические элементы можно выстроить в ряд нормальных электродных потенциалов (при 25оС по водородной шкале):

Li

K

Ca

Na

Mg

Al

Zn

Fe

H2

Cu

-3,02

-2,93

-2,88

-2,72

-1,87

-1,3

-0,76

-0,441

0,0

+0,33

Ряды нормальных электродных потенциалов дают возможность установить, что катионы металлов, стоящие справа от алюминия, имеют меньший потенциал выделения и выделяются на катоде предпочтительнее, чем алюминий. Катионы металлов, стоящих слева от алюминия, имеют повышенные катодные потенциалы и будут оставаться в электролите, не выделяясь на катоде.

Таким образом, в солевом расплаве электродный потенциал алюминия существенно меньше, чем у других составляющих электролита (K, Li, Ca, Na, Mg), что и обеспечивает его электрохимическую устойчивость в процессе электролиза.

Чтобы начался электролиз, к электродам ячейки необходимо приложить напряжение не меньше, чем напряжение разложения, т.е. минимальное напряжение, которое необходимо приложить к электродам, чтобы началось электролитическое разложение вещества (ЕНР):

ЕНР = Еа – Ек,

где Еа и Ек – анодный и катодный потенциалы.

Чтобы шел электролиз, величина ЕНР должна быть повышена на сумму так называемых перенапряжений: анодного Рa и катодного Рк:

U = ЕНР + Рa + Рk

Значение перенапряжения тем больше, чем больше плотность тока, т.е. сила тока в амперах, приходящаяся на единицу рабочей поверхности электрода.

Напряжение разложения глинозема, растворенного в криолитоглиноземном электролите, составляет 2,2 В. При электролизе с инертным анодом (например, платиновым) и алюминиевым катодом идет реакция с выделением кислорода на аноде и алюминия на катоде:

2Al2O3  4Al + 3O2

Если используется угольный анод и суммарная реакция идет с выделением на аноде СО2, то для её осуществления требуется меньше энергии и напряжение разложения составит 1,189 В.

Однако фактическое напряжение разложения глинозема на промышленном электролизере на 0,3-0,5 В выше, чем расчетное. Объясняется это тем, что выделяющийся на аноде СО2 образуется не напрямую, а через промежуточные оксиды углерода с меньшим содержанием кислорода:

СхОу, где х > у.

Разложение промежуточных оксидов идет замедленно, поэтому при электролизе они всегда присутствуют на поверхности анода. Для их разложения и удаления с поверхности анода конечных продуктов электролиза требуется более высокий положительный потенциал анода и фактическое значение напряжения разложения выше, чем расчетное.

Практическое значение напряжения разложения определяют на промышленных электролизерах путем измерения обратной электродвижущей силы (ЭДС), т.е. напряжения на ванне в момент отключения серии от источника тока. При анодной плотности тока

0,8 А/см2 обратная ЭДС составляет 1,45-1,65 В. Значение обратной ЭДС и перенапряжение растут со снижением химической активности анодного материала (углерода) и уменьшаются с повышением температуры в электролизере.

Значение обратимых напряжений разложения других компонентов электролита AlF3, NaF, MgF2, CaF2 намного выше ЕНР глинозема и равны соответственно 3,97; 4,37; 4,61; 5,16 В. Они кратно превышают ЕНР глинозема и при стандартных условиях процесса электролиза электролитическое разложение составляющих электролита не происходит.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]