Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Высшая математика ч.2.doc
Скачиваний:
30
Добавлен:
18.11.2018
Размер:
4.65 Mб
Скачать

III. Определенный интеграл

  1. Определение определенного интеграла

Пусть в нашем распоряжении есть функция , определенная на отрезке .

  1. Разобьем отрезок на n произвольных частей точками .

  2. В каждом из отрезков выберем произвольную точку и вычислим значение функции в ней, т.е.величину

  3. Умножим найденное значение функции на длину соответствующего отрезка и получим величину .

  4. Составим сумму Sn всех таких произведений .Сумма подобного вида называется интегральной суммой функции на отрезке .

  5. Обозначим через длину наибольшего частичного отрезка .

  6. Найдем предел интегральной суммы при условии так, что .

Если при этом интегральная сумма Sn имеет предел равный J, который не зависит от способа разбиения отрезка на частичные отрезки, ни от выбора точек в них, то число J называется определенным интегралом функции на отрезке и обозначается . Таким образом, . Числа и b называются нижними и верхними пределами интегрирования, - подынтегральной функцией, dx – подынтегральным выражением, x – переменной интегрирования, - областью интегрирования. Функция , для которой на отрезке существует определенный интеграл , называется интегрируемой на этом участке.

Теор. Коши. Если функция непрерывна на отрезке , то определенный интеграл существует.

Непрерывность функции является достаточным условием ее интегрируемости. Однако, неопределенный интеграл может существовать и для некоторых разрывных функций, в частности для всякой ограниченной на отрезке функции, имеющей на нем конечное число точек разрыва.

  1. Геометрический смысл определенного интеграла

П

Рис. 1

усть на отрезке задана непрерывная функция . Нарисуем график этой функции. Фигура ограниченная сверху графиком функции , снизу осью ox, сбоку линиями x=a и x=b называется криволинейной трапецией. Найдем площадь этой трапеции. Для этого отрезок разделим точками на n частей и т.д. повторяя то, что мы делали выше, получим - будет равна площади ступенчатой фигуры и приближено площади криволинейной трапеции

С уменьшением всех величин точность приближения S криволинейной трапеции к S прямоугольной увеличивается. Точность записанного выше соотношения возрастает. Поэтому за точное значение площади криволинейной трапеции принимается предел S, к которому стремится площадь ступенчатой фигуры Sn, когда так, что , .

, то есть .

Итак, определенный интеграл от неотрицательной функции численно равен площади криволинейной трапеции. В этом и состоит геометрический смысл определенного интеграла.

3) Работа переменной силы

Пусть материальная точка перемещается под действием силы F, направленной вдоль оси OX и имеющей переменную величину . Найдем работу по перемещению точки М на . . Для определения приближенного значения работы на всем участке , нам надо произвести суммирование на всем отрезке.

.

Точность этого равенства возрастает с уменьшением и увеличением n. Поэтому за точное значение работы принимается предел этой суммы

.