Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
переделка.doc
Скачиваний:
44
Добавлен:
25.12.2018
Размер:
6.07 Mб
Скачать
  1. Основные понятия химической кинетики: молекулярность, скорость реакции (начальная, истинная и средняя), константа скорости.

a1A1 + a2А2 a3D (R1)

В кинетике оперируют с тремя основными переменными – время, концентрация и скорость реакции. Концентрация равна числу молекул i-го сорта (ni), заключенных в единичном объеме V.

{кмоль/м3} (1.1)

В ходе реакции концентрации реагентов и продуктов изменяются, причем Ci = Ci(t) является непрерывной функцией. Кривую Ci(t) обычно называют кинетической кривой. Скорость реакции непосредственно связана с этими изменениями и определяется как изменение числа молекул (nA) реагента (или продукта) во времени в единице реакционного пространства V (или S).

Заметим, что выражение скорости через исходный реагент имеет определенное преимущество, так как обычно реагенты всегда известны, а их число меньше числа продуктов (которые не всегда легко идентифицировать). При сопоставлении скоростей расхода реагента и накопления продукта необходимо учитывать стехиометрические коэффициенты, например, для реакции 1 в стационарном состоянии:

(для нестационарных процессов это равенство не выполняется).

Итак, для реакции 1 можно записать:

(1.2)

(знак минус берется потому, что концентрация реагента убывает во времени). Уравнение 1.2 показывает взаимосвязь между тремя основными понятиями химической кинетики.

Как в механике, различают истинную (мгновенную, т.е. скорость в данный момент времени.) скорость реакции, которая определяется как производная функции C(t) по времени, и среднюю скорость, определяемую, аналогично средней скорости движения, как отношение изменения концентрации (аналог расстояния) за время t:

На рис. 1 истинная и средняя скорости представлены как тангенсы угла наклона касательных АN и АM к кинетической кривой. Очевидно, что, с уменьшением промежутка времени между двумя измерениями концентрации ∆t, точка М → N и средняя скорость возрастает и приближается к истинной (рис. 2): → r при ∆t→ 0.

С

C(0)

С1 А

С2 N M

Рис. 1. Изменение концентрации реагента во времени реакции: C(0), С1 и С2 начальная и текущая концентрация реагента в моменты t1 и t2

t1 t2 Время

Скорость реакции (υ) – кол-во молекул данного сорта, реагирующих в единицу времени.

Скорость реакции является важнейшим определением кинетики потому, что она обеспечивает меру реакционной способности реагирующего вещества. Более того, совокупность знаний о зависимости скорости реакции от условий эксперимента закладывается в основу схемы механизма реакции и кинетической модели. Эти знания формируются в результате обширного экспериментального кинетического исследования реакции, осуществляемой в специальных реакторах.

Постулаты химической кинетики

  1. Предполагается, что химическая реакция протекает в результате соударения, по меньшей мере, двух статистически независимых частиц.

  2. Химическая реакция возможна в случае, если система соударяющихся частиц обладает минимальной (пороговой) энергией и обладает подходящей пространственной ориентацией. Это пороговое значение энергии называется энергией активации реакции Ea.

  3. Вероятность протекания реакции равна единице и не зависит от энергии частиц, если она больше Ea и равна нулю, если энергия частиц меньше Ea, то есть:

1-

Рис. 2. Изменение вероятности протекания реакции  с увеличением энергии частиц. Ea -энергия активации реакции.

Ea Энергия

Из первого постулата следует, что скорость реакции (1):

r1 = k1CA1а1 CА2а2 (1.4)

где коэффициент k1 называется константой скорости. Важно отметить, что константа скорости не зависит от концентрации и зависит только от температуры. Эта зависимость называется законом Аррениуса (1889) и, в соответствии со вторым постулатом, имеет вид:

(1.5)

Здесь R – универсальная газовая постоянная и ko – предэкспоненциальный фактор, пропорциональный числу столкновений молекул с подходящей пространственной ориентацией, а множитель учитывает долю молекул, имеющих при столкновении энергию Е ≥ Ea (закон Больцмана).

Показатели степени а1 и а2, характеризующие эмпирическую зависимость скорости реакции от концентрации, называют порядком реакции по веществу: например, а1– это порядок реакции по веществу А. В случае элементарных реакций а1 и а2 равны стехиометрическим коэффициентам; в сложных процессах порядок реакции по веществу может отличаться от стехиометрического коэффициента. Порядком реакции называется сумма показателей степеней m = (а1 + а2), в которых величина концентрации входит в кинетическое уравнение. Из (1.4) ясно, что размерность константы скорости зависит от порядка реакции.

Для гомогенных реакций величина порядка реакции обычно имеет целочисленное значение. Однако в случае гетерогенных процессов порядок реакции может быть дробной величиной, что является следствием нелинейной связи концентрации в газовой (или жидкой) фазе и на поверхности. Эта связь будет рассмотрена позднее.

Термин «молекулярность» означает число молекул, участвующих в элементарном акте. Очевидно, что молекулярность равна сумме стехиометрических коэффициентов реагентов.