Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Курс лекций по математике.doc
Скачиваний:
2877
Добавлен:
07.02.2015
Размер:
8.48 Mб
Скачать

Упражнения

  1. В чем суть аксиоматического способа построения теории?

  2. Верно ли, что аксиома - это предложение, которое не требует доказательства?

  3. Назовите основные понятия школьного курса планиметрии. Вспомните несколько аксиом из этого курса. Свойства каких понятий в них описываются?

  4. Дайте определение прямоугольника, выбрав в качестве родового понятие параллелограмма. Назовите три понятия, которые в курсе геометрии должны предшествовать понятию «параллелограмм».

  5. Какие предложения называют теоремами? Вспомните, какова логическая структура теоремы и что значит доказать теорему.

Лекция 32. Аксиоматическое построение множества целых неотрица­тельных чисел

План:

1. Основные понятия и аксиомы Пеано. Определение целого неотрицательного числа

2. Сложение целых неотрицательных чисел. Таблицы сложения и умножения.

3. Умножение целых неотрицательных чисел. Законы сложения и умножения.

60. Основные понятия и аксиомы. Определение натурального числа

В качестве основного понятия при аксиоматическом построении арифметики натуральных чисел взято отношение «непосредственно следовать за», заданное на непустом множестве N. Известными также считаются понятие множества, элемента множества и другие теорети­ко-множественные понятия, а также правила логики.

Элемент, непосредственно следующий за элементом а, обозначают а'.

Суть отношения «непосредственно следовать за» раскрывается в следующих аксиомах.

Аксиома 1. В множестве N существует элемент, непосредственно не следующий ни за каким элементом этого множества. Будем назы­вать его единицей и обозначать символом 1.

Аксиома 2. Для каждого элемента а из N существует единствен­ный элемент а, непосредственно следующий за а.

Аксиома 3. Для каждого элемента а из N существует не более од­ного элемента, за которым непосредственно следует а.

Аксиома 4. Всякое подмножество М множества N совпадает с N, если обладает свойствами: 1) 1 содержится в М; 2) из того, что а со­держится в М, следует, что и а' содержится в М.

Сформулированные аксиомы часто называют аксиомами Пеано.

Используя отношение «непосредственно следовать за» и аксиомы 1-4, можно дать следующее определение натурального числа.

Определение. Множество N, для элементов которого установ­лено отношение «непосредственно следовать за», удовлетворяю­щее аксиомам 1-4, называется множеством натуральных чисел, а его элементы - натуральными числами.

В данном определении ничего не говорится о природе элементов множества N. Значит, она может быть какой угодно. Выбирая в качестве множества N некоторое конкретное множество, на котором зада­но конкретное отношение «непосредственно следовать за», удовле­творяющее аксиомам 1-4, мы получим модель данной системы аксиом. В математике доказано, что между всеми такими моделями можно установить взаимно однозначное соответствие, сохраняющее отноше­ние «непосредственно следовать за», и все такие модели будут отли­чаться только природой элементов, их названием и обозначением. Стандартной моделью системы аксиом Пеано является возникший в процессе исторического развития общества ряд чисел:

1,2,3,4,...

Каждое число этого ряда имеет свое обозначение и название, кото­рое мы будем считать известными.

Рассматривая натуральный ряд чисел в качестве одной из моделей аксиом 1-4, следует отметить, что они описывают процесс образова­ния этого ряда, причем происходит это при раскрытии в аксиомах свойств отношения «непосредственно следовать за». Так, натураль­ный ряд начинается с числа 1 (аксиома 1); за каждым натуральным числом непосредственно следует единственное натуральное число (аксиома 2); каждое натуральное число непосредственно следует не более чем за одним натуральным числом (аксиома 3); начиная от чис­ла 1 и переходя по порядку к непосредственно следующим друг за другом натуральным числам, получаем все множество этих чисел (аксиома 4). Заметим, что аксиома 4 в формализованном виде описыва­ет бесконечность натурального ряда, и на ней основано доказательст­во утверждений о натуральных числах.

Вообще моделью системы аксиом Пеано может быть любое счет­ное множество, например:

I, II, III, IIII, ...

о, оо, ооо, оооо, …

один, два, три, четыре, …

Рассмотрим, например, последовательность множеств, в которой множество {оо} есть начальный элемент, а каждое последующее мно­жество получается из предыдущего приписыванием еще одного круж­ка (рис. 108,а). Тогда N есть множество, состоящее из множеств опи­санного вида, и оно является моделью системы аксиом Пеано. Дейст­вительно, в множестве N существует элемент {оо}, непосредственно не следующий ни за каким элементом данного множества, т.е. вы­полняется аксиома 1. Если счи­тать обведенные кружки за один элемент (рис. 108.6), то для каждого

а) {о о}, {о о о}, {о о о о}, …

б) { }, { о}, { о о}, …

Рис. 108

Рис. 109

множества А рассматриваемой совокупности существует единст­венное множество, которое получается из А добавлением одного круж­ка, т.е. выполняется аксиома 2. Для каждого множества А существует не более одного множества, из которого образуется множество А добавле­нием одного кружка, т.е. выполняется аксиома 3. Если М N и из­вестно, что множество А содержится в М, следует, что и множество, в котором на один кружок больше, чем в множестве А, также содер­жится в N, то М ~ N (и значит, выполняется аксиома 4).

Заметим, что в определении натурального числа ни одну из аксиом опустить нельзя - для любой из них можно построить множество, в котором выполнены остальные три аксиомы, а данная аксиома не вы­полняется. Это положение наглядно подтверждается примерами, приве­денными на рисунках 109 и 110. На рисунке 109, а) изображено множе­ство, в котором выполняются аксиомы 2 и 3, но не выполнена ак­сиома 1 (аксиома 4 не будет иметь смысла, так как в множестве нет эле­мента, непосредственно не следующего ни за каким другим). На рисун­ке 109, 6) показано множество, в котором выполнены аксиомы 1, 3 и 4, но за элементом а непосредственно следуют два элемента, а не один, как требуется в аксиоме 2. На рисунке 109, в) изображено множество, в котором выполнены аксиомы 1, 2, 4, но элемент с непосредственно следует как за элементом а, так и за элементом b. На рисунке 110 пока­зано множество, в котором выполнены аксиомы 1, 2, 3, но не выпол­няется аксиома 4 - множество точек, лежащих на луче, содержит 1 и вместе с

Рис. 110

каждым числом оно содержит непосредственно следующее за ним чис­ло, но оно не совпадает со всем множест­вом точек, показанных на рисунке.

То обстоятельство, что в аксиомати­ческих теориях не говорят об «истинной» природе изучаемых понятий, делает на первый взгляд эти теории слишком абстрактными и формальными, - оказывается, что одним и тем же аксиомам удовлетворяют различные множества объектов и разные отношения между ними. Однако в этой кажущейся абстрактности и состоит сила аксиоматического метода: каждое утверждение, выведенное логиче­ским путем из данных аксиом, применимо к любым множествам объ­ектов, лишь бы в них были определены отношения, удовлетворяющие аксиомам.

Итак, мы начали аксиоматическое построение системы натураль­ных чисел с выбора основного отношения «непосредственно следо­вать за» и аксиом, в которых описаны его свойства. Дальнейшее по­строение теории предполагает рассмотрение известных свойств нату­ральных чисел и операций над ними. Они должны быть раскрыты в определениях и теоремах, т.е. выведены чисто логическим путем из отношения «непосредственно следовать за», и аксиом 1-4.

Первое понятие, которое мы введем после определения натураль­ного числа, - это отношение «непосредственно предшествует», кото­рое часто используют при рассмотрении свойств натурального ряда.

Определение. Если натуральное число b непосредственно следует за натуральным числом а, то число а называется непосредствен­но предшествующим (или предшествующим) числу b .

Отношение «предшествует» обладает рядом свойств. Они форму­лируются в виде теорем и доказываются с помощью аксиом 1-4.

Теорема 1. Единица не имеет предшествующего натурального числа.

Истинность данного утверждения вытекает сразу из аксиомы 1.

Теорема 2. Каждое натуральное число а, отличное от 1, имеет предшествующее число b , такое, что b ' = а.

Доказательство. Обозначим через М множество натуральных чисел, состоящее из числа 1 и из всех чисел, имеющих предшествую­щее. Если число а содержится в М, то и число а' также есть в N, по­скольку предшествующим для а' является число а. Это значит, что множество М содержит 1, и из того, что число а принадлежит множе­ству М, следует, что и число а' принадлежит М. Тогда по аксиоме 4 множество М совпадает с множеством всех натуральных чисел. Зна­чит, все натуральные числа, кроме 1, имеют предшествующее число.

Отметим, что в силу аксиомы 3 числа, отличные от 1, имеют един­ственное предшествующее число.

Аксиоматическое построение теории натуральных чисел не рас­сматривается ни в начальной, ни в средней школе. Однако те свойства отношения «непосредственно следовать за», которые нашли отраже­ние в аксиомах Пеано, являются предметом изучения в начальном курсе математики. Уже в первом классе при рассмотрении чисел пер­вого десятка выясняется, как может быть получено каждое число. При этом используются понятия «следует» и «предшествует». Каждое новое число выступает как продолжение изученного отрезка натураль­ного ряда чисел. Учащиеся убеждаются в том, что за каждым числом идет следующее, и притом только одно, что натуральный ряд чисел бесконечен. И конечно, знание аксиоматической теории поможет учителю методически грамотно организовать усвоение детьми особенности натурального ряда чисел.