Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Курс лекций по математике.doc
Скачиваний:
2877
Добавлен:
07.02.2015
Размер:
8.48 Mб
Скачать

93. Основные выводы § 18

Изучая материал данного параграфа, мы определили сле­дующие понятия:

  • делитель данного числа;

  • простое число;

  • составное число;

  • общий делитель данных чисел;

-наибольший общий Делитель данных чисел;

- взаимно простые числа;

  • общее краткое данных чисел;

-наименьшее общее кратное данных чисел.

Рассмотрены, а в ряде случаев и доказаны теоремы о свой­ствах делимости и признаках делимости на 2, 3, 4, 5,9. Кроме того, дан способ получения признаков делимости на те со­ставные числа, которые можно представить в виде произведе­ния взаимно простых чисел.

Любое составное число можно представить в виде произ- ведения простых множителей или разложить на простые множители.

Наибольший общий делитель двух чисел Можно находить двумя способами. Первый основан на разложении данных чисел на простые множители, а второй является алгоритмом Евклида.

Наименьшее общее кратное двух чисел можно находить, используя разложение данных чисел на простые множители, или, если известен наибольший общий делитель чисел а и b, то по формуле

a·b

K(a,b )= ־־־־־־־

D(a,b)

Лекция 48. О расширении множества целых неотрицательных чисел. Целые числа

План:

1. Задача расширения понятия числа. Краткие исторические сведения о возникновении понятия дроби и отрицательного числа. Целые числа. Отрицательные целые числа. Целое отрицательное число. Противоположное число. Модуль числа. Сумма, произведение, разность двух целых чисел. Свойства множества целых чисел и их геометрическая интерпретация.* (вводится позже)

СВОЙСТВА МНОЖЕСТВА ЦЕЛЫХ ЧИСЕЛ.

Теорема 8.22. (Теорема Архимеда). Для любых целых чисел а и в существует натуральное число п, что пв> а.

Доказательство. Рассмотрим число п = а', т.е. п = а + 1. В силу теоремы 8.9 и следствия 2 имеем неравенства в > 1 и п > а. Почленно перемножая эти неравенства, получим пв > а. Теорема доказана.

Теорема 8.23. (Принцип наименьшего числа).Любое непустое подмно­жество множества целых чисел содержит наименьшее число.

Доказательство. Пусть множество М таково, что М   и

М . Рассмотрим два случая.

I. Множество М состоит из конечного числа элементов. В этом случае доказатель­но теоремы проводим методом математической индукции по числу элементов. Если М состоит из одного элемента (М = {а}), то этот элемент и будет наименьшим из чисел, входящих в М. Предположим, что теорема справедлива для множества М, содержащего некоторое конечное число элементов п. Другими словами, считаем, что всякое множество М  , состоящее из п элементов, содержит наименьшее число. Пользуясь предположением, докажем, что множество М  , состоящее из

п + 1 элементов, также содержит наимень­шее число. Выберем произвольный элемент аМ и рассмотрим множество М₁ = М\{а}. Множество М₁ состоит из п элементов, а значит по предположению в нем найдется наименьшее число, которое обозначим через в. Так как а М₁, а в М₁, то а в, но тогда по теореме 8.10 из двух чисел а и в одно меньше другого. Наименьшее из двух чисел а и в означим через с. Очевидно, что с является наименьшим числом в множестве М.

Итак, все условия метода математической индукции выполнены и справедливость теоремы для любого конечного подмножества доказана.

II. Пусть теперь множество М состоит из бесконечного числа элементов. Выберем любой элемент n из множества М. Число n разбивает множество М на два подмножества:

М₁ = {х/хМ , х п} и М₂ = {х| хМ х > п }. Множество М₁ состоит из конечного числа элементов (их не более чем п + 1), а значит по первой части теоремы, в нем содержится наименьшее число, которое обозначим через т. Итак, для любого хМ₁ , имеем т х. В частности, т п. Но тогда, учитывая определение множества М₂, приходим к выводу, что наименьшее число во всем множестве т . Теорема доказана.

Теорема 8.24. {Принцип наибольшего числа). Если М - непустое под­множество множества целых чисел и существует такое число в, что для любого числа х М выполняется неравенство х <в, то в множе­стве М есть наибольшее число.

Доказательствотеоремы аналогично доказательству теоремы 8.23.

Теорема 8.25. {Свойство дискретности множества Z). Для любого

а Z не существует целого числа п такого, что а < п < а'.

Доказательство проведем методом от противного. Пусть существует такое п, что выполняются оба неравенства: а < п и п < а'. По определению отношения "меньше" существуют такие целые числа с₁ и с₂, такие, что а + с₁ = п и п + с= а'. Тогда а + (с₁ + с) = а ' т.е. с₁ + с = 1. С другой стороны,

с 1 и с 1, поэтому с₁ + с₂ ≥ 2. Пришли к противоречию с допущением, значит, оно неверное. Теорема доказана.

Теорема 8.26. Множество целых чисел Z: а) бесконечное; б) дискретное; в) линейно упорядоченное; г) счетное, д) в нем имеется наименьшее число и нет наибольшего числа; е) в нем выполняются принципы наименьшего и наибольшего числа и свойство Архимеда.

Доказательство, а) В множестве Z есть собственные подмножества, которые ему эквиваленты. Например, множество четных целых чисел является подмножеством Z и ему эквивалентно, поэтому множество Z бесконечное; б) Свойство доказано в теореме 8.25; в) Свойство доказано в теореме 8.10; г) Свойство следует из определения счетного множества: д) Свойство доказано в теореме 8.9 и следствиях нему; е) Свойство доказано в теоремах 8.23 и 8.24.

АКСИОМАТИЧЕСКОЕ ПОСТРОЕНИЕ МНОЖЕСТВА ЦЕЛЫХ НЕОТРИЦАТЕЛЬНЫХ ЧИСЕЛ Z₀. Множество Z = N{0}. Нуль можно ввести, изменив I и IV аксиомы Пеано следующим образом:

I. В множестве Z существует элемент, непосредственно не следующий ни за каким элементом этого множества. Называют его нулем и обозначают символом 0.

IV. Пусть множество М есть подмножество множества Z и известно, что:

а) 0М; б) из того, что аМ , следует, что и а'М. Тогда множество М совпадает с множеством Z.

Аксиомы II и III остаются без изменения.

Свойства сложения и умножения целых неотрицательных чисел принимают вид: 

Для сложения: 1) (а Z)[а + 0 = а]; 2) (а,в Z)[а + в' = (а + в)'}.

Для умножения: 1) (а Z)[а0 = 0]; 2) (а,в Z)[ав' = ав + а]. Определения операций вычитания и деления целых неотрицательных чисел аналогичны соответствующим определениям операций для натуральных чисел. При этом считают, что деление на нуль невозможно: значение 0:0 не определено, в частности а:0 при а  0 не существует.

Отношение "меньше" ("больше") на множестве Z, определяется так же, как и на множестве N. Причем, числом, которое меньше любого другого числа, является число нуль и оно в числовом ряду стоит на первом месте: 0, 1,2,3,....

Все теоремы, доказанные для натуральных чисел, остаются в силе для целых неотрицательных чисел.

ТЕОРЕТИКО-МНОЖЕСТВЕННОЕ ПОСТРОЕНИЕ МНОЖЕСТВА ЦЕЛЫХ НЕОТРИЦАТЕЛЬНЫХ ЧИСЕЛ. Число - одно из основных понятий математики, возникшее впервые в связи с потребностями счета предметов. Построение системы целых неотрицательных чисел на основе теории множеств связано с именем Г. Кантора. В этой теории, которую называют количественной теорией, основополагающими являются понятия конечного множества и взаимно однозначного соответствия.

С теоретико-множественных позиций натуральное число рассматривается как число элементов конечного множества. Число 0 тоже имеет теоретико-мно­жественное истолкование: оно соответствует пустому множеству (0 = п(0)). Так как одному и тому же множеству соответствует только одно число, то вся сово­купность конечных множеств распадается на классы равночисленных (эквива­лентных) множеств. Поэтому натуральным числом называют общее свойство (инвариант) класса непустых эквивалентных множеств. Так, число 5 - то об­щее свойство, которым обладают множества, содержащее пять пальцев, пять вер­шин пятиконечной звезды, пять сторон пятиугольника и т.п. Каждый класс опре­деляется любым своим представителем, например, отрезком натурального ряда.

Два натуральных числа называются равными, если соответствующие им множества эквивалентны, в противном случае - числа называются неравными, т.е. если а = п(А), в = п(В), то а=в А~В и ав А~В.

Теорема 8.27.Отношение равенства целых неотрицательных чисел обладает следующими свойствами:

1. Рефлексивность. Любое целое неотрицательное число равно са­мому себе, т.е. а = а.

2. Симметричность. Если число а равно числу в, то и число в равно числу а, т.е. если а = в, то в = а.

3. Транзитивность. Два числа, равные третьему, равны между собой, т.е. если а = в и в = с, то а = с.

Доказательство.Каждое из этих свойств вытекает непосредственно из одноименного свойства отношения равномощности множеств и определения равенства натуральных чисел.

Следствие.Отношение равенства целых неотрицательных чисел яв­ляется отношением эквивалентности.

Отношение "меньше" тоже имеет теоретико-множественное истолкование. Если множество А равномощно собственному подмножеству множества В и п{А} = а, п(В) = в, говорят, что число а меньше числа в, и пишут а < в. В этой же ситуации говорят, что в больше а, и пишут в > а.

Теорема 8.28. Отношение "меньше" на множестве Z₀ обладает следую­щими свойствами:

1. Для любого отличного от нуля числа а справедливо неравенство 0 < а.

2. Антирефлексивность. Любое целое неотрицательное число не всту­пает в отношение "меньше" с самим собой, т.е. неверно, что а < а) ].

3. Асимметричность. Если а < в, то неверно, что в < а.

4. Транзитивность. Если а < в, в < с, то а < с.

Доказательство. 1. Свойство вытекает из того, что пустое подмножество является подмножеством любого множества А, для которого а = п(А), а также теоретико-множе­ственного определения отношения "меньше" и того факта, что 0 = п(0)).

2. Справедли­вость свойства вытекает из того, что конечное множество не может быть равномощно собственному подмножеству.

3. Справедливость свойства вытекает из следующих рассуждений: если конечное множество А равномощно собственному подмножеству мно­жества в, то множество в не может быть равномощно никакому собственному подмноже­ству множества А, т.к. в противном случае мы получили бы, что А равномощно некоторой своей собственной части, что противоречит конечности множества А.

4. Свойство выте­кает из транзитивности отношения строгого включения для множеств (АВВС => АС). Теорема доказана.

Следствие. Отношение "меньше" определяет на множестве целых не­отрицательных чисел строгий порядок, который является линейным в силу свойства связности: если а  в, то либо а < в, либо в < а.

ПОРЯДКОВЫЕ И КОЛИЧЕСТВЕННЫЕ ЧИСЛА. В аксиоматической теории натуральное число рассматривается как элемент специального множе­ства, представляющего собой бесконечный упорядоченный ряд, в котором обя­зательно существует первое число (первый элемент) и следующие за ним числа расположены в определенном порядке. Другими словами, аксиоматическая тео­рия рассматривает натуральное число, как число порядковое.

В теоретико-множественной трактовке натуральное число понимается как, количественная характеристика конечного множества, т.е. как число количественное.

Эти два различные смысла натурального числа связаны между собой в процессе счета предметов, т.к. при пересчете элементов некоторого множества не| только находят, сколько в нем элементов (пять, двадцать один и т.п.), но и расставляют эти элементы в определенном порядке (упорядочивают их: пери второй, третий и т.д.). Так, например, упорядочиваются в театрах ряды и кресла, на вешалках - крючки для одежды, на улицах - дома, в каждом доме - этажи квартиры и т. п. Поэтому натуральные числа служат не только для ответа вопрос "сколько?", но и для ответа "какой по счету?", т.е. они являются не только количественными, но и порядковыми числами.

При счете элементов некоторого конечного множества А важно соблюдать следующие требования: 1) начинать счет можно с любого элемента множества; 2) ни один элемент множества А не должен быть пропущен; 3) ни один элемент множества не должен быть сосчитан дважды; 4) первым при счете называется слово «один»; 5) числа, используемые при счете, следуют одно за другим без пропусков.

АРИФМЕТИЧЕСКИЕ ОПЕРАЦИИ НА МНОЖЕСТВЕ Z₀ (ТЕОРЕТИ­КО-МНОЖЕСТВЕННЫЙ ПОДХОД). Сложение целых неотрицательных чисел связано с операцией объединения непересекающихся конечных множеств.

Сумма целых неотрицательных чисел а и в - число элементов в объедине­нии непересекающихся множеств А и В таких, что п(А) = а, п(В) = в, т.е. а + в = п(АВ). где а = п(А), в = п(В), АВ=0.

Теорема 8.30.Для любых целых неотрицательных чисел а и в всегда существует единственное целое неотрицательное число с, являющее­ся их суммой, т.е. сумма любых двух целых неотрицательных чисел существует и единственна.

Доказательство. Пусть а и в - два целых неотрицательных числа. Из элементов любой природы построим конечные множества А и В такие, что п(А) = а, п(В) = в и АВ=0.

Докажем существование. Из теории множеств известно, что объединение конечного числа конечных множеств есть множество конечное. Поэтому объединение АВ является конечным множеством. Последнее означает, что существует целое неотрицательное чис­ло с = пАВ). Но по определению суммы целых неотрицательных чисел число с и есть сумма чисел а и в. Тем самым существование суммы доказано.

Докажем единственность. Покажем, что сумма а + в единственна и не зависит от выбора представителей в классах. Возьмем из классов эквивалентности, определяющих числа а и в, вместо множеств А и В соответственно, множества А₁ и В₁. Пусть с₁ - целое неотрицательное число такое, что п(А₁ В₁) = с₁. Покажем, что с₁ = с. Иначе говоря, дока­жем, что если А₁~А и В₁~В, причем А₁  В₁ = А  В =  , то А₁ В₁ ~ А В.

Пусть - взаимно однозначное соответствие между множествами А и А, а- между множествами В и В₁. Каждый элемент х, принадлежащий АВ, принадлежит либо А, либо В, потому что х не может принадлежатьАи В одновременно, т.к. их пересечение пусто.

Определим соответствие  между множествами А В и А₁ В₁ следующим образом.

Если хА, то положим (х) = (х) = х₁ А.

Если хВ, то положим  (х) =  (х) = х₁ В.

Покажем, что  взаимно однозначное соответствие. В самом деле, при таком определении для каждого х существует единственный элемент , удовлетворяю условию (х) =  (х). И наоборот, всякий элемент х₁ соответствует точно одному элементу хеА В. Следовательно, взаимно однозначное соответствие  между множествам А В и А₁ В₁ установлено. Поэтому А В ~ А₁ В₁, а значит с₁ = с. Теорема доказана.

Определение суммы двух целых неотрицательных чисел легко распростра­няется на любое конечное число слагаемых.

Вычитание целых неотрицательных чисел а и в связано с выделением из множества А (а = п(А)) подмножества В (в = п(В)).

Разность целых неотрицательных чисел а и в - число элементов в дополне­нии множества В до множества А при условии, что п(А) = а, п(В) = в, ВА, т.е.

а-в=п(А\В).

Теорема 8.31. Разность целых неотрицательных чисел а и всуществует и единственна тогда и только тогда, когда в ≤ а, т.е.

(а,в₀)(с₀)[с = а - в <=> в ≤ а].

I. Необходимость условия существования разности;

II. Достаточность условия существования разности;

III. Единственность разности.

В количественной теории рассматриваются различные подходы к определению произведения целых неотрицательных чисел. Так, взяв за основу понятие суммы, имеем следующее определение.

Произведением целых неотрицательных чисел а и а – целое неотрицательное число ав, которое удовлетворяет следующим условиям:

  1. а*в = а+а+…+а (в раз) при в > 1;

  2. а*1 = а при в = 1;

  3. а*0 = 0.

Данное определение имеет следующее теоретико-множественное обоснование. Пусть даны в попарно непересекающихся множеств А₁, А₂, …, А, каждое из которых имеет а элементов. Тогда их объединение содержит ав элементов.

Существование и единственность произведения целых неотрицательных чисел при таком подходе вытекает из существования и единственности суммы.

Однако для вывода законов умножения, а также законов, связывающих умножение с другими операциями над целыми неотрицательными числами, более удобен другой подход к определению произведения. Он связан с декартовым произведением множеств.

Произведение целых неотрицательных чисел а и в – число элементов декартова произведения множеств А и В, где п(А) = а, п(В) = в, т.е. а*в = п(АВ), где а = п(А), в = п(В).

Далее доказывается теорема о существовании и единственности произведение целых неотрицательных чисел (в данном пособии берем без доказательства).

Деление чисел связано с разбиением конечных множеств на равночисленные попарно не пересекающиеся подмножества. При этом решаются две задачи: нахождение числа элементов в каждом подмножестве (деление на части) и нахождение числа таких подмножеств (деление по содержанию).

Пусть а = п(А) и множество А разбито на попарно не пересекающиеся равномощные подмножества. Частным чисел а и в называется:

- число подмножеств в этом разбиении, если в – число элементов каждого подмножества в разбиении множества А;

- число элементов в каждом подмножестве, если в – число подмножеств в разбиении множества А.

Частное обозначается а:в.

Если даны числа а и в такие, что а = п(А), в = п(В), а > в, и множество А можно разбить на п подмножеств, равномощных множеству В, то говорят, что число а больше в в п раз, а число в меньше числа а в п раз.

Невозможность деления на нуль также имеет свое теоретико-множествен­ное истолкование. Если а в, а в= 0, то невозможность деления я на в вытекает из невозможности представления непустого конечного множества А (п(А) = а) в виде объединения пустых подмножеств.

ЗАКОНЫ И СВОЙСТВА АРИФМЕТИЧЕСКИХ ОПЕРАЦИЙ НА МНО­ЖЕСТВЕ Z₀ практически полностью совпадают с аналогичными законами и свойствами арифметических операций на множестве N.

Используя теоретико-множественную трактовку gокажем основные законы, которым удовлетворяют арифметические операции на множестве целых неотри­цательных чисел.

Теорема 8.33. Для любых целых неотрицательных чисел а, d и с спра­ведливы следующие законы арифметических операций:

1. Коммутативности: а + d = d + а, а*в = в*а.

2. Ассоциативности: (а + в) + с = а + (в + с), (а*в)*с = а*(в*с).