Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Курс лекций по математике.doc
Скачиваний:
2877
Добавлен:
07.02.2015
Размер:
8.48 Mб
Скачать

Упражнения

  1. Опишите в общем виде процесс доказательства методом математической индукции. Из скольких этапов он состоит?

  2. Используя метод математической индукции, докажите, что для любого натурального числа п истинны утверждения:

а) 1 + 2 + 3 + … + n = (n (n+1) (2n+1)) : 6;

б) 12 + 23 + 34 +…+ n (n+1) = ((n (n+1) (n+2)) : 3;

в) 14 + 27 + 310 + ... +п(3п + 1) = п(п +1) ;

г) (п + 3n):6;

д)(4ⁿ + 15n - 1) :9;

68. Количественные натуральные числа. Счет

Аксиоматическая теория описывает натуральное число как элемент бесконечного ряда, в котором числа располагаются в определенном порядке, существует первое число и т.д. Другими словами, в аксиоматике раскрывается порядковый смысл натурального числа. Но натуральные числа имеют и количественный смысл. Чтобы выяснить, как связаны между собой эти два смысла натурального числа, рассмотрим такие понятия, как отрезок натурального ряда, конечное множество, счет, и другие.

Определение. Отрезком Nа натурального ряда называется множество натуральных чисел, не превосходящих натурального числа а.

Используя запись множества, для элементов которого указано характеристическое свойство, можно записать, что Nа = {х\ х  N и х  а}.

Например, отрезок N7 - это множество натуральных чисел, не превосходящих числа 7, т.е. N7 = {1,2,3,4, 5, 6, 7}.

Отметим два важных свойства отрезков натурального ряда.

1) Любой отрезок Nа содержит единицу. Это свойство вытекает из определения отрезка Nа.

2) Если число х содержится в отрезке Nа и х  а, то и непосредственно следующее за ним число х+1 также содержится в Nа.

Действительно, если х  Nа, и х  а, то х < а. Это означает, что существует такое натуральное число с, что а = х + с. Если с= 1, то а= х + с. Если с = 1, то а = х + 1, а значит, х + 1 содержится в Nа. Если же с > 1, то с - 1 – натуральное число и, следовательно, а = х + с = (х + 1) + (с - 1). Но тогда х + 1 < а, т.е. х + 1 - натуральное число, принадлежащее отрезку Nа.

Определение. Множество А называется конечным, если оно равномощно некоторому отрезку натурального ряда.

Например, множество А вершин треугольника - конечное множество так как оно равномощно отрезку N3 = {1, 2, 3}, т, е. А ~ N3.

Теорема 31. Всякое непустое конечное множество равномощно одному и только одному отрезку натурального ряда,

Доказательство этой теоремы мы опускаем.

Определение. Если непустое конечное множество А равномощно отрезку , то натуральное число а называют числом элементов множества А и пишут п(А) = а.

Например, если А - множество вершин треугольника, то п(А) = 3. Из данного определения и теоремы 31 получаем, что для любого непустого конечного множества А число а = п(А) единственное.

Определение. Установление взаимно однозначного соответствия между элементами непустого конечного множества А и отрезком натурального ряда называется счетом элементов множества Л.

Так как всякое непустое конечное множество равномощно только одному отрезку натурального ряда, то число элементов, т.е. результат счета не зависит от того, в каком порядке будут пересчитываться эле­менты множества. Поэтому можно какому-либо элементу множества А поставить в соответствие число 1 и больше этот элемент не рассмат­ривать. Затем какому-либо из оставшихся элементов сопоставить чис­ло 2 и больше его не рассматривать. Продолжая это построение, по­следнему оставшемуся элементу мы поставим в соответствие число а.

В процессе счета мы не только найдем число элементов множества А, но и упорядочим его: элемент, которому соответствует число 1, пер­вый; элемент, которому сопоставлено число 2, - второй, и т.д.

Таким образом, всякое натуральное число а можно рассматривать как характеристику численности некоторого конечного множества А. Натуральное число а имеет при этом количественный смысл.