Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
AVR / datasheets / attiny_13.pdf
Скачиваний:
58
Добавлен:
20.03.2015
Размер:
1.19 Mб
Скачать

Electrical Characteristics

Absolute Maximum Ratings*

..................................Operating Temperature

-55°C to +125°C

*NOTICE: Stresses beyond those listed under “Absolute

 

 

 

 

 

 

Maximum Ratings” may cause permanent dam-

Storage Temperature .....................................

-65°C to +150°C

age to the device. This is a stress rating only and

 

 

 

 

 

 

functional operation of the device at these or

Voltage on any Pin except

RESET

 

 

other conditions beyond those indicated in the

with respect to Ground ................................

- 1.0V to VCC+0.5V

operational sections of this specification is not

Voltage on

 

with respect to Ground

-1.0V to +13.0V

implied. Exposure to absolute maximum rating

RESET

conditions for extended periods may affect

Maximum Operating Voltage

6.0V

device reliability.

 

DC Current per I/O Pin ...............................................

40.0 mA

 

DC Current VCC and GND Pins................................

200.0 mA

 

 

 

 

 

 

 

 

DC Characteristics TA = -20°C to 85°C, VCC = 1.8V to 5.5V (unless otherwise noted)(1)

Symbol

Parameter

Condition

 

 

 

 

Min.

 

Typ.

Max.

Units

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

VIL

Input Low Voltage

 

 

 

 

 

 

 

 

 

-0.5

 

 

0.2VCC

V

 

 

 

 

 

 

 

 

 

 

 

 

(3)

 

 

 

VIH

Input High-voltage

Except RESET pin

 

0.6VCC

VCC +0.5

V

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(3)

 

 

 

VIH2

Input High-voltage

 

RESET pin

 

 

 

 

0.9VCC

VCC +0.5

V

 

 

 

 

 

 

 

VOL

Output Low Voltage(4)

 

I

OL

= 10 mA, V

CC

= 5V

 

 

 

0.6

V

(Port B)

 

IOL = 5 mA, VCC = 3V

 

 

 

0.5

V

 

 

 

 

 

VOH

Output High-voltage(5)

 

I

OH

= -10 mA, V

CC

= 5V

4.3

 

 

 

V

(Port B)

 

IOH = -5 mA, VCC = 3V

2.5

 

 

 

V

 

 

 

 

 

IIL

Input Leakage

 

Vcc = 5.5V, pin low

 

 

 

8

µA

Current I/O Pin

 

(absolute value)

 

 

 

 

 

IIH

Input Leakage

 

Vcc = 5.5V, pin high

 

 

 

8

µA

Current I/O Pin

 

(absolute value)

 

 

 

 

 

RRST

Reset Pull-up Resistor

 

 

 

 

 

 

 

 

 

20

 

 

100

kΩ

Rpu

I/O Pin Pull-up Resistor

 

 

 

 

 

 

 

 

 

20

 

 

100

kΩ

 

 

 

Active 1MHz, VCC = 2V

 

 

 

0.55

mA

 

 

 

Active 4MHz, VCC = 3V

 

 

 

3.5

mA

 

Power Supply Current

 

Active 8MHz, VCC = 5V

 

 

 

12

mA

ICC

 

Idle 1MHz, VCC = 2V

 

 

0.08

0.25

mA

 

 

 

 

 

 

Idle 4MHz, VCC = 3V

 

 

0.41

1.5

mA

 

 

 

 

 

 

 

 

Idle 8MHz, VCC = 5V

 

 

1.6

5.5

mA

 

Power-down mode

 

WDT enabled, VCC = 3V

 

 

< 5

16

µA

 

 

WDT disabled, VCC = 3V

 

 

< 0.5

8

µA

 

 

 

 

 

Notes: 1. All DC Characteristics contained in this data sheet are based on simulation and characterization of other AVR microcontrollers manufactured in the same process technology. These values are preliminary values representing design targets, and will be updated after characterization of actual silicon.

2.“Max” means the highest value where the pin is guaranteed to be read as low.

3.“Min” means the lowest value where the pin is guaranteed to be read as high.

114 ATtiny13

2535A–AVR–06/03

ATtiny13

4.Although each I/O port can sink more than the test conditions (10 mA at VCC = 5V, 5 mA at VCC = 3V) under steady state conditions (non-transient), the following must be observed:

1] The sum of all IOL, for all ports, should not exceed 60 mA.

If IOL exceeds the test condition, VOL may exceed the related specification. Pins are not guaranteed to sink current greater than the listed test condition.

5.Although each I/O port can source more than the test conditions (10 mA at VCC = 5V, 5 mA at VCC = 3V) under steady state conditions (non-transient), the following must be observed:

1] The sum of all IOH, for all ports, should not exceed 60 mA.

If IOH exceeds the test condition, VOH may exceed the related specification. Pins are not guaranteed to source current greater than the listed test condition.

External Clock Drive Waveforms

Figure 60. External Clock Drive Waveforms

VIH1

VIL1

External Clock Drive

Table 58. External Clock Drive

 

 

VCC = 1.8 - 5.5V

VCC = 2.7 - 5.5V

VCC = 4.5 - 5.5V

 

Symbol

Parameter

Min.

Max.

Min.

Max.

Min.

Max.

Units

 

 

 

 

 

 

 

 

 

1/tCLCL

Clock Frequency

0

TBD

0

TBD

0

TBD

MHz

tCLCL

Clock Period

TBD

 

TBD

 

TBD

 

ns

tCHCX

High Time

TBD

 

TBD

 

TBD

 

ns

tCLCX

Low Time

TBD

 

TBD

 

TBD

 

ns

tCLCH

Rise Time

 

TBD

 

TBD

 

TBD

s

tCHCL

Fall Time

 

TBD

 

TBD

 

TBD

s

tCLCL

Change in period from one clock cycle to the next

 

2

 

2

 

2

%

Figure 61. Maximum Frequency vs. VCC

16 MHz

9,6 MHz

Safe Operating

Area

2 MHz

1.8V

2.7V

4.5V

5.5V

115

2535A–AVR–06/03

ADC Characteristics – Preliminary Data

Table 59.

ADC Characteristics

 

 

 

 

 

Symbol

Parameter

Condition

Min

Typ

Max

Units

 

 

 

 

 

 

 

 

Resolution

Single Ended Conversion

 

10

 

Bits

 

 

 

 

 

 

 

Differential Conversion

 

8

 

Bits

 

 

 

 

 

 

 

 

 

 

 

 

 

Single Ended Conversion

 

 

 

 

 

 

VREF = 4V, VCC = 4V,

 

2

2.5

LSB

 

 

ADC clock = 200 kHz

 

 

 

 

 

 

 

 

 

 

 

 

 

Single Ended Conversion

 

 

 

 

 

 

VREF = 4V, VCC = 4V,

 

4.5

 

LSB

 

Absolute accuracy (Including

ADC clock = 1 MHz

 

 

 

 

 

 

 

 

 

 

 

Single Ended Conversion

 

 

 

 

 

INL, DNL, quantization error,

 

 

 

 

 

VREF = 4V, VCC = 4V,

 

 

 

 

 

gain and offset error)

 

2

 

LSB

 

 

ADC clock = 200 kHz

 

 

 

 

 

 

 

 

 

 

Noise Reduction Mode

 

 

 

 

 

 

 

 

 

 

 

 

 

Single Ended Conversion

 

 

 

 

 

 

VREF = 4V, VCC = 4V,

 

4.5

 

LSB

 

 

ADC clock = 1 MHz

 

 

 

 

 

 

 

 

 

 

Noise Reduction Mode

 

 

 

 

 

 

 

 

 

 

 

 

 

Single Ended Conversion

 

 

 

 

 

Integral Non-linearity (INL)

VREF = 4V, VCC = 4V,

 

0.5

 

LSB

 

 

ADC clock = 200 kHz

 

 

 

 

 

 

 

 

 

 

 

 

 

Single Ended Conversion

 

 

 

 

 

Differential Non-linearity (DNL)

VREF = 4V, VCC = 4V,

 

0.25

 

LSB

 

 

ADC clock = 200 kHz

 

 

 

 

 

 

 

 

 

 

 

 

 

Single Ended Conversion

 

 

 

 

 

Gain Error

VREF = 4V, VCC = 4V,

 

2

 

LSB

 

 

ADC clock = 200 kHz

 

 

 

 

 

 

 

 

 

 

 

 

 

Single Ended Conversion

 

 

 

 

 

Offset Error

VREF = 4V, VCC = 4V,

 

2

 

LSB

 

 

ADC clock = 200 kHz

 

 

 

 

 

 

 

 

 

 

 

 

Conversion Time

Free Running Conversion

13

 

260

µs

 

 

 

 

 

 

 

 

Clock Frequency

Single Ended Conversion

50

 

1000

kHz

 

 

 

 

 

 

 

AVCC

Analog Supply Voltage

 

VCC - 0.3

 

VCC + 0.3

V

 

 

 

 

 

 

 

VREF

Reference Voltage

Single Ended Conversion

1.0

 

AVCC

V

 

 

 

 

 

Differential Conversion

1.0

 

AVCC - 0.5

V

 

 

 

 

 

 

 

 

 

 

VIN

Input Voltage

Single ended channels

GND

 

VREF

V

Differential Conversion

0

 

AVCC(1)

V

 

 

 

 

Input Bandwidth

Single Ended Channels

 

38,5

 

kHz

 

 

 

 

 

 

 

Differential Channels

 

4

 

kHz

 

 

 

 

 

 

 

 

 

 

 

VINT

Internal Voltage Reference

 

1.0

1.1

1.2

V

RREF

Reference Input Resistance

 

 

32

 

kΩ

RAIN

Analog Input Resistance

 

 

100

 

MΩ

Note: 1.

VDIFF must be below VREF

 

 

 

 

 

116 ATtiny13

2535A–AVR–06/03

ATtiny13

ATtiny13 Typical

Characteristics –

Preliminary Data

Active Supply Current

The data contained in this section is largely based on simulations and characterization of similar devices in the same process and design methods. Thus, the data should be treated as indications of how the part will behave.

The following charts show typical behavior. These figures are not tested during manufacturing. All current consumption measurements are performed with all I/O pins configured as inputs and with internal pull-ups enabled. A sine wave generator with rail- to-rail output is used as clock source.

The power consumption in Power-down mode is independent of clock selection.

The current consumption is a function of several factors such as: operating voltage, operating frequency, loading of I/O pins, switching rate of I/O pins, code executed and ambient temperature. The dominating factors are operating voltage and frequency.

The current drawn from capacitive loaded pins may be estimated (for one pin) as CL*VCC*f where CL = load capacitance, VCC = operating voltage and f = average switching frequency of I/O pin.

The parts are characterized at frequencies higher than test limits. Parts are not guaranteed to function properly at frequencies higher than the ordering code indicates.

The difference between current consumption in Power-down mode with Watchdog Timer enabled and Power-down mode with Watchdog Timer disabled represents the differential current drawn by the Watchdog Timer.

Figure 62. Active Supply Current vs. Frequency (0.1 - 1.0 MHz)

ACTIVE SUPPLY CURRENT vs. FREQUENCY

 

 

 

 

 

 

0.1 - 1.0 MHz

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

1.8

 

 

 

 

 

 

 

 

 

5.5V

 

1.6

 

 

 

 

 

 

 

 

 

5.0V

 

1.4

 

 

 

 

 

 

 

 

 

4.5V

(mA)

1.2

 

 

 

 

 

 

 

 

 

4.0V

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

 

 

3.3V

CC

 

 

 

 

 

 

 

 

 

 

I

0.8

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.7V

 

0.6

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0.4

 

 

 

 

 

 

 

 

 

1.8V

 

 

 

 

 

 

 

 

 

 

 

 

0.2

 

 

 

 

 

 

 

 

 

 

 

0

 

 

 

 

 

 

 

 

 

 

 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Frequency (MHz)

117

2535A–AVR–06/03

Figure 63. Active Supply Current vs. Frequency (1 - 16 MHz)

ACTIVE SUPPLY CURRENT vs. FREQUENCY

 

 

 

 

 

 

1 - 16 MHz

 

 

 

 

 

 

15

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5.5V

 

12.5

 

 

 

 

 

 

 

 

 

5.0V

 

 

 

 

 

 

 

 

 

 

 

 

10

 

 

 

 

 

 

 

 

 

4.5V

(mA)

7

 

 

 

 

 

 

 

 

4.0V

 

CC

 

 

 

 

 

 

 

 

 

 

I

 

 

 

 

 

 

 

 

 

 

 

5

 

 

 

 

 

 

3.3V

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.5

 

 

 

 

2.7V

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0

 

 

1.8V

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0

2

4

6

8

10

12

14

16

18

20

Frequency (MHz)

Figure 64. Active Supply Current vs. VCC (Internal RC Oscillator, 9.6 Mhz)

ACTIVE SUPPLY CURRENT vs. VCC

INTERNAL RC OSCILLATOR, 9.6 MHz

 

14

 

 

 

 

 

 

 

 

 

12

 

 

 

 

 

 

 

85°C

 

 

 

 

 

 

 

 

 

25°C

 

10

 

 

 

 

 

 

 

-40°C

 

 

 

 

 

 

 

 

 

(mA)

8

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CC

6

 

 

 

 

 

 

 

 

I

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

0

 

 

 

 

 

 

 

 

 

1.5

2

2.5

3

3.5

4

4.5

5

5.5

 

 

 

 

 

VCC (V)

 

 

 

 

118 ATtiny13

2535A–AVR–06/03

Соседние файлы в папке datasheets