Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
СТ_Менеджмент_13_14_1 / УЧЕБНИК _Системы технологий_ (2 рус.).doc
Скачиваний:
1393
Добавлен:
18.02.2016
Размер:
14.09 Mб
Скачать

2.8. Воздух в технологических процессах

Наряду с природной водой воздух широко используется в различных технологических процессах.

Прежде всего, воздух расходуется в энергетических агрегатах во время сжигания органических энергоносителей (угля, газа, мазута, бензина) – тепловых электростанциях и двигателях внутреннего сгорания. Большие объемы воздуха используют в металлургии: на производство 1т стали его расходуют около 15· 103 м3 на 1т меди – примерно 60 · 103 м3. Воздух широко используется для транспортирования материалов (пневмотранспорт), при теплопередаче и охлаждении технологических объектов, как рабочее тепло в пневматических системах. Некоторые физические характеристики атмосферного воздуха: плотность – 1,293 кг/м3; средняя молярная масса (условно) – 29; критическая температура – 140,7 0С, критическое давление 3,72 МПа

Существенную роль в промышленности играют отдельные составные воздуха, характеристики которых приведены в табл. 2.1.

Состав воздуха и его свойства

Таблица 2.1

Содержание водяного пара в воздухе колеблется от долей процента до нескольких процентов и зависит от местных условий и температуры. Определенной температуре и давлению соответсвует конкретное содержание водяного пара в воздухе. Отношение абсолютной влажности воздуха к максимально возможной, выраженной в %, называется относительной влажностью воздуха.

Зная относительную и абсолютную влажность насыщенной парами воды воздуха, можно вычислить концентрацию воды в воздухе, что иногда является необходимым в технологических процессах. Используя полученные данные и фазовую диаграмму воды (см. рис 2.6), можно предусмотреть условия конденсации водяного пара (выпадание росы) на поверхности машин, изделий, предотвращение возникновения процессов коррозии и др. При охлаждении ниже О0С вода почти полностью конденсируется в лед (иней). При температуре ниже -192 0С и давлении 760 мм водяного столба из воздуха образуется легкоподвижная голубая жидкость плотностью 960кг/м3.

Поскольку температура кипения кислорода (-183 0С) выше температуры кипения азота (-196 0С), кислород легче переходит в жидкое состояние, нежели азот, вследствие чего жидкий воздух богаче на кислород, нежели атмосферный. Жидкий воздух можно достаточно долго хранить в специальных термосах-сосудах Дьюара. Во время хранения жидкий воздух еще больше обогащается на кислород вследствие испарения азота, аргона, и др. методом ректификации - перегонкой.

Горение в чистом кислороде проходит быстрее, нежели в воздухе, и тепло не затрачивается на нагрев азота воздуха. Этот эффект используется для получения высоких температур до 3200 0С) при сжигании (ацетилена, водорода) в специальных горелках, которыми сваривают и разрезают металлы.

Кислород интенсифицирует химические процессы многих производств. В доменном процессе при обогащении кислородом дутья повышается производительность плавки, в производстве серной и азотной кислот, в процессе полимеризации этилена. Смесь сжиженного кислорода с органическим веществом (углем, древесиной) имеет сильные взрывчатые свойства и применяется в горнодобывающей технологии для взрывных работ.

В противоположность кислороду, второй компонент воздуха – молекулярный азот – химически малоактивный газ. Атмосферный азот в больших количествах применяется как исходное вещество для синтеза аммиака и некоторых соединений, а также как инертная среда.

Аргон широко применяется как инертный газ в спецметалургии, сварке, как рабочее тело в плазмотронах. Важное значение в процессах новых технологий имеют и другие инертные газы.