Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
СТ_Менеджмент_13_14_1 / УЧЕБНИК _Системы технологий_ (2 рус.).doc
Скачиваний:
1393
Добавлен:
18.02.2016
Размер:
14.09 Mб
Скачать

3.5. Биохимические источники энергии

В настоящее время в некоторых государствах биомасса (например, дрова) широко используется населением и достигает в общем энергетическом балансе 80%. Это существенно наносит вред окружающей среде: уничтожаются леса, увеличивается эрозия почвы, высыхают водоемы.

К тому же коэффициент конверсии горения дров очень низкий, а полезные элементы биомассы (N,P) не используются.

Ресурсы биомассы, как отходы в лесном и сельскохозяйственном производстве, значительно и ежегодно возобновляются, что и привлекает внимание к их использованию. На Украине они эквивалентны 30 млн.т. угля.

Существует два основных способа конверсии биомассы в горючий газ: термохимический и биохимический. При первом способе биомасса (древесина или отходы сельхозпроизводства) подвергаются пиролизу (разложение без доступа воздуха) в реакторе при 400...500 оС.

При использовании метода биохимической конверсии биомасса поддается брожению с образованием горючего газа (70% СН4 и 30% СО2), удельная теплота сгорания близка до условного топлива (29,3 МДж/кг). При этом на каждую тонну условного топлива одновременно вырабатывается до 1,5...1,8 т высококачественных органических удобрений. Особенно эффективен этот процесс в случае биохимической переработки отходов животноводческих ферм. В Китае работают миллионы биогазовых установок средней мощностью 14 000 м3 газа в год. По прогнозу до 2000 года в США биохимические источники должны обеспечить 5% всей потребляемой в государстве электроэнергии.

3.6. Экологически чистые нетрадиционные системы технологий энергетики

Экономически оправданным источником концентрированной энергии является органическое топливо: нефть, газ, уголь. В последнее десятилетие в ряд с тепловой энергетикой стала ядерная. Экологические проблемы этих видов энергетики общеизвестны. Но не только экологические. Опыт эксплуатации АЭС показал, что сегодня существует важные экономические проблемы, которые в предыдущие годы не учитывали. Обнаружилось, что затраты на поддержание экологических норм загрязнения окружающей среды радионуклидами таковы, что ближайшее будущее атомной энергетики пока что не предвидено. Это заставило в последние годы вести энергичные поиски альтернативных источников энергии. Сегодня природных экологически чистых источников энергии известно немало. Основная проблема – это низкое качество (концентрация) всех известных на сегодня альтернативных видов энергии и, соответственно, низкая экономическая эффективность ее конверсии в высококонцентрированную форму.

Рис. 3.5. Ветровой электрогенератор

1 – электрогенератор; 2 – редуктор; 3 – вал; 4 – основа электроблока; 5 – регулятор лопастей; 6 – лопасть; 7 – электрокабель; 8 – контрольный блок.

Анализируя различные возможные альтернативные источники энергии, следует помнить, что во всех без исключения случаях, чтобы эксплуатировать энергоснабжающую технологию, необходимо на обеспечение ее функционирования тоже расходовать энергию соответствующего качества. Важно подбирать для каждого промышленного объекта наиболее рациональный по концентрации энергии источник, помня, что чем больше концентрация энергии, тем она дороже. Рассмотрим конверсии альтернативных форм энергии, которые сегодня используются в сельском хозяйстве.

Проблема конверсии энергии ветра не такая простая. Прежде всего, возникает вопрос качества ветровой энергии и ее ресурса. Принято считать, что на территории в 1 млн. км2 энергетические ресурсы ветра составляют около 0,5 ГВт. Но с точки зрения концентрации ее использование для конверсии современной техникой в электрическую невелика. В бывшем СССР эксплуатировалось свыше 200 ветровых электрогенераторов общей мощностью около 1000 кВт. Одна установка типа АВЭУ-6 (автоматическая ветровая электрическая установка) в состоянии за сутки откачать из скважины глубиной 50м до 20м3 воды или освещать и обогревать строение. Мощность современных ветровых турбоэлектрогенераторов составляет 50...100 кВт (рис. 3.5). Такие установки довольно широко применяют, например, в Дании, где имеются подходящие климатические условия с постоянными ветрами от 9,5 до 24 м/с. Безусловно, широкое применение ветровых турбогенераторов в значительной степени позволяет решить проблему снабжения электроэнергией на разных хозяйственных объектах в сельской местности и в быту. В Приазовье сейчас идет монтаж турбоэлектрогенераторов общей суммарной мощностью 50 МВт. Что касается решения проблемы промышленного энергоснабжения, то ставить такие задачи пока не реально.