Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Lupandin_V_I_Matematicheskie_metody_v_psikhologi.doc
Скачиваний:
457
Добавлен:
12.03.2016
Размер:
2.97 Mб
Скачать

Раздел4. Меры центральной тенденции

Центральная тенденция – то количественное (численное) значение признака, к которому тяготеет переменная величина. Поскольку понятие «тяготеет» несколько произвольно и с математической точки зрения не вполне корректно, имеет смысл рассмотреть различные меры центральной тенденции более подробно.

В психологических исследованиях в качестве мер центральной тенденции чаще всего используются мода, медиана и среднее арифметическое значение. Значительно реже используются такие меры как среднее геометрическое, среднее гармоническое, обратное среднее гармоническое значение и др.

4. 1. Мода

Мода (Mo) – наиболее часто встречающееся значение признака. В предыдущем примере (ранжированный ряд уровня личностной тревожности) мы имеем две моды: Mo1 = 36 и Mo2 = 45 (эти значения переменной встречаются трижды, в то время как все остальные – по 1 или 2 раза). В зависимости от того, сколько значений признака удовлетворяют определению моды, различают мономодальные (имеющие одну моду), бимодальные (имеющие две моды) и полимодальные распределения (имеют более чем две моды), а также распределения, не имеющие моды (все значения признака встречаются примерно с одинаковой частотой). В бимодальном и полимодальном распределениях, в свою очередь, можно определить наибольшую и наименьшую моды.

В тех случаях, когда анализируются таблицы сгруппированных частот исследуемого признака, как правило, определяется модальный класс, т. е. тот класс распределения, в который попадает наибольшее количество частот (значений признака). Так, для иллюстрации зачерненный столбец на рис. 3.1, а соответствует модальному классу.

Мода не является достаточно строгой мерой центральной тенденции, поскольку она не учитывает характера распределения переменных, а значит может использоваться лишь в предварительных выводах и прогнозах. Кроме того, необходимо использовать моду только для больших объемов выборок, поскольку для малых она недостаточно информативна.

4. 2. Медиана

Медиана (Md) – значение, которое делит упорядоченное множество данных (ранжированный ряд) пополам так, что одна половина значений оказывается больше, а другая – меньше медианы. Медиана – среднее значение ранжированного ряда. Если число значений нечетное, то медиана соответствует среднему члену ряда, если четное, то медиана есть среднее между двумя центральными значениями (в предыдущем примере Md = 41,5).

Медиана соответствует 50-му процентилю, 5-му децилю или 2-му квартилю в группе данных, т. е. Md = P50 = D5 = Q2.

Мода и медиана не учитывают разброса данных, и переменные, лежащие в стороне от центра, не влияют на их величину.

4. 3. Среднее арифметическое значение

Среднее арифметическое значение, или просто среднее (), равно сумме переменных, деленной на их число.

Для несгруппированных переменных среднее арифметическое вычисляется по формуле:

(4.1)

Для сгруппированных переменных можно воспользоваться другой формулой – среднее будет соответствовать сумме произведений средних значений каждого класса и частоты встречаемости значения признака в данном классе:

(4.2)

Среднее арифметическое может использоваться и для тех признаков, для которых не найден способ количественного измерения (шкала порядка). Для этого в качестве xi используются ранговые числа, а среднее принято называть непараметрическим средним.

Взвешенное среднее арифметическое используется в тех случаях, когда разные составляющие имеют разный «удельный вес» в формировании общей совокупности:

(4.3)

или: (4.4)

где n – объем выборки, N – число классов.

Пример

Средний балл аттестата учащихся выпускных классов одной из школ соответствует следующим значениям: 11-а – 4,2; 11-б – 4,0 и 11-в – 3,8. Численность этих классов составляет: 11-а – 25 человек, 11-б – 28 и 11-в – 32 человека. В данном случае средний балл аттестата по всем выпускным классам составит (4,2 × 25 + 4,0 × 28 + 3,8 × 32) : (25 + 28 + 32) = 3,98.

Среднее принято округлять с точностью до знака, следующего за последним знаком xi (увеличение точности на порядок).

Свойства среднего

1. Сумма всех отклонений от среднего значения равна нулю:

Доказательство:

поскольку `

2. Если константу с прибавить к каждому значению, то среднее превратится в

Доказательство:

3. Если каждое значение множества со средним умножить на константуc, то среднее станет равным

Доказательство:

4. Сумма квадратов отклонений значений от их среднего арифметического меньше суммы квадратов отклонений от любой другой точки: (при условии, что b ¹`x ).

Доказательство: где

Примем Тогда:

поскольку

Так как c2 > 0, то:

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]