Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Физ. основы механики на ж.д..doc
Скачиваний:
44
Добавлен:
13.08.2019
Размер:
2.66 Mб
Скачать

3. Ускорение

При движении тела скорость может быть не постоянна. Быстрота изменения скорости характеризуется ускорением. Ускорение, по определению, равно отношению бесконечно малого изменения вектора скорости ко времени dt этого изменения:

. (1.6)

То есть ускорение – это вектор­, равный первой производной от вектора скорости по времени. Через проекции вектора ускорения на декартовы оси координат , вектор полного ускорения равен . Величина полного ускорения по теореме Пифагора равна .

Кроме этого, принято представлять полное ускорение как векторную сумму составляющих ускорения на касательное и нормальное направление к траектории . Их называют соответственно касательным (тангенциальным) и нормальным (центростремительным) ускорениями. Величина полного ускорения равна .

Представим вектор скорости, который направлен по касательной, как произведения модуля скорости на единичный вектор касательной . Определим ускорение как первую производную от этого произведения по времени

. (1.7)

Первый член формулы характеризует изменение скорости по величине и определяет касательное ускорение . Второй член формулы определяет скорость поворота единичного вектора и характеризует изменение скорости по направлению. Это нормальное ускорение, которое направлено к центру кривизны траектории.

В ыведем формулу нормального ускорения. Разложим вектор полного изменения скорости на составляющие: на нормаль и на касательную к траектории (рис. 1.2). При бесконечно малом перемещении дугу dS можно принять за отрезок. Заштрихованные равнобедренные треугольник расстояний и треугольник скоростей подобны, Условие подобия . Подставим сюда путь , получим

. (1.8)

4. Уравнения равнопеременного движения

Движение точки называется равнопеременным, если вектор ускорения постоянен.

Так как, исходя из определения ускорения, элементарное приращение скорости равно , то полное изменение вектора скорости за конечное время равно сумме элементарных приращений скорости, т.е. равно интегралу от ускорения по времени . Откуда скорость в момент времени t может быть определена по уравнению

. (1.9)

Элементарное изменение радиус-вектора точки, по определению скорости, равно . Полное изменение вектора перемещения за конечное время будет равно сумме элементарных приращений, то есть будет равно интегралу от вектора скорости по времени . Откуда, радиус – вектор равен

(1.10)

Применим эти уравнения для вывода скорости и радиус-вектора точки при равнопеременном движении. Равнопеременное движение – это движение с постоянным по величине и по направлению ускорением. Например, полет тела в поле тяжести Земли с ускорением свободного падения g = 9,81 м/с2.

Получим уравнение для скорости. Для этого проинтегрируем уравнение (1.9) при постоянном векторе ускорения, , в результате получим

. (1.11)

Подставив формулу скорости (1.11) под знак интеграла для вектора перемещения, получим основное кинематическое уравнение равнопеременного движения

. (1.12)

При решении конкретных задач векторные уравнения (1.11) и (1.12) проецируют на выбранные оси координат и получают систему уже алгебраических уравнений для решения задачи.