Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Физ. основы механики на ж.д..doc
Скачиваний:
44
Добавлен:
13.08.2019
Размер:
2.66 Mб
Скачать

3. Физический маятник

Физический маятник – это тело произвольной формы, точка подвеса которого расположена выше центра тяжести. Если в поле тяжести маятник отклонить от положения равновесия и отпустить, то под действием силы тяжести маятник стремится к положению равновесия, но, достигнув его, по инерции продолжает движение и отклоняется в противоположную сторону. Затем процесс движения повторяется в обратном направлении. В итоге маятник будет совершать вращательные собственные колебания.

Для вывода формулы периода собственных колебаний маятника применим основной закон динамики вращательного движения: угловое ускорение тела прямо пропорционально моменту силы и обратно пропорционально моменту инерции тела относительно оси вращения:

e = . (14.10)

Момент силы по определению равен произведению силы на плечо силы. Плечо силы – это длина перпендикуляра, опущенного из оси вращения на линию действия силы. Для маятника плечо силы тяжести равно d = lsin a, где l – расстояние между осью вращения C и центром тяжести ц.м. маятника (рис. 14.4). При малых колебаниях маятника угол отклонения a сравнительно мал, а синусы малых углов с достаточной точностью равны самим углам. Тогда момент силы тяжести можно определить по формуле М=−mgla. Знак минус обусловлен тем, что момент силы тяжести противодействует отклонению маятника. Так как угловое ускорение – это вторая производная от угла поворота по времени, то основной закон динамики вращательного движения (14.10) принимает вид

. (14.11)

Это дифференциальное уравнение второго порядка. Его решением должна быть функция, превращающая уравнение в тождество. Такой функцией может быть функция косинуса или синуса

a = a0 sin (w t + j ). (14.12)

При подстановке решения (14.12) в дифференциальное уравнение (14.11), после сокращения, получим, что уравнение превращается в тождество, если циклическая частота колебаний равна . Циклическая частота связана с периодом колебаний соотношением T = 2p /w. Отсюда

. (14.13)

Эта формула позволяет экспериментально определять моменты инерции тел, если их представить физическим маятником, по измеренному периоду колебаний.

4. Галопирующие колебания вагона

Галопирующие колебания – это вращательные колебания вокруг горизонтальной оси Y, перпендикулярной бортам вагона и проходящей через центр масс вагона. При этом движение вагона подобно галопу лошади. Колебания обусловлены упругими силами подвески и инертностью вагона.

Пусть из-за случайного толчка, например на стыке рельсов или при падении груза, корпус вагона наклонился. Пусть при этом пружины передней вагонной тележки сжались, а задней тележки – растянулись. Возникает момент упругих сил пружин подвески, стремящийся вернуть вагон в положение равновесия. Но вагон по инерции проходит положение равновесия, поворачиваясь в противоположном направлении. Потом движение повторяется в обратном направлении, и таким образом возникают галопирующие колебания.

Определим период галопирующих колебаний. Так как это вращательные колебания, то для вывода применим основной закон динамики вращательного движения: произведение момента инерции вагона относительно оси вращения на угловое ускорение равно моменту упругих сил подвески: J ε = М.

Получим формулу для момента силы, который создают пружины подвески. По закону Гука упругие силы пружин пропорциональны деформации пружин и направлены противоположно деформации F = –kx. Так как передняя подвеска сжата, то ее сила упругости направлена вертикально вверх, а сила упругости растянутой задней подвески – вниз (рис. 14.5). Момент пары упругих сил подвески F равен произведению силы на плечо пары сил: M = F l, где плечо l равно расстоянию между линиями действия сил, то есть между серединами передней и задней вагонных тележек. Деформация пружин х связана с у глом поворота вагона как длина дуги с центральным углом: . Итак, момент упругих сил равен .

Подставив в закон динамики формулу момента силы, получим дифференциальное уравнение галопирующих колебаний

. (14.14)

Здесь угловое ускорение записано как вторая производная от угла поворота по времени. Решением этого дифференциального уравнения должна быть функция, у которой вторая производная имеет такой же вид, как и сама функция, но противоположного знака. Например, это может быть функция косинуса

α= α0 cos ω t , (14.15)

где α0 – амплитуда колебаний, ω – циклическая частота колебаний. Если определить вторую производную от угла поворота по времени и подставить в дифференциальное уравнение, то выбранная функция будет решением, при условии, если циклическая частота колебаний равна . Период колебаний будет равен

. (14.16)

Здесь k –– коэффициент упругости пружин подвески, принятый одинаковым для передней и задней вагонных тележек, Jмомент инерции вагона.

Задачи

1. Определить период колебаний железнодорожной платформы массой 20 т относительно горизонтальной оси, если платформа одним краем висит на упоре. Коэффициент упругости подвески 1·107 Н/м

2. Определить период галопирующих колебаний двухосного вагона массой 40 т, если расстояние между осями 10 м. Коэффициент упругости одной пружины 2·107 Н/м, длина вагона 15 м.

3. Тяговый двигатель при опорно-осевом подвешивании с моментом инерции 50 кг м2 подвешен к раме вагона на пружине, коэффициент упругости которой 2·105 Н/м. Определить частоту собственных колебаний двигателя, если расстояние от оси до пружины 0,4 м.

4. При подвешивании тягового двигателя массой 500 кг к раме вагона пружины подвески растянулись на 0,5 см. Определить период колебаний двигателя.

5. На платформу массой 20 т опустился контейнер массой 5 т со скоростью 1м/с. Определить амплитуду и период вертикальных колебаний платформы. Коэффициент упругости пружин подвески 1·10 7 Н/м.

6. Платформа массой 40 т при движении совершает вертикальные колебания с частотой 2 Гц и амплитудой 1 см. Определить наибольшую скорость и ускорение колебаний платформы. Определить наибольшую и наименьшую силы давления вагона на рельсы.

7. Определить амплитуду и период горизонтальных колебаний вагона массой 60 т на пружине автосцепки, если вагон на скорости 0,5 м/с сцепился с таким же вагоном. Коэффициент упругости пружин автосцепки 2·105 Н/м. Трением пренебречь.