Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Пособие.doc
Скачиваний:
158
Добавлен:
02.04.2015
Размер:
6.8 Mб
Скачать

13.3.3.Метод сетки

Численные методы решения наиболее полно разработаны для дифференциальных уравнений с двумя и тремя независимыми переменными. Мы ограничимся рассмотрением численных методов с двумя независимыми переменными.

Уравнения (161)–(163) должны быть дополнены соответствующими начальными и граничными условиями, т. е. должно быть заданно значение функции u в момент времени t = t0, а также на концах координаты х.

Такая совокупность начальных и граничныхусловий получила название краевых условий.

Уравнения подобного типа решаются с помощью метода конечных разностей, сущность которого состоит в том, что за искомый набор чисел принимается таблица значений решения в точках некоторого множества, называемых обычно сеткой.

Для вычисления искомой таблицы используются алгебраические уравнения, приближенно заменяющие исходное дифференциальные уравнение.

Рассмотрим решение дифференциальных уравнений в частых производных на примере диффузионной модели неподвижной среды (модели диффузии вещества в растворителе), которая имеет следующий вид:

(165)

с начальными и граничными условиями

.

Решить уравнение (165) – значит найти распределение концентрации во времени и пространстве (вдоль координат tих), т. е., по сути, построить трехмерный график, который обычно имеет вид криволинейного пространства.

Суть метода сетки заключается в том, что вся заданная пространственно-временная область разбивается на равные интервалы времени и пространства через выбранные интервалы дискретизации t их, и затем по представленной ниже методике находятся значения интересующего нас параметра в каждом узле сетки.

Пусть необходимо найти распределение концентрации С(t,x) на интервале [0,tk], [0,L].Тогда количество интервалов дискретизации по времени будет равно

, (166)

а по пространственной координате

. (167)

Примем обозначение текущей концентрации в произвольном узле сетки:

  • по времени верхним индексом (n);

  • по пространственной координате нижним индексом (k).

Таким образом, необходимо найти Ckn, т. е. заполнить сетку прии(рис. 103).

Рис. 103. Сетка

Для того чтобы решить поставленную задачу, необходимо представить исходное дифференциальное уравнение в виде конечно-разностных отношений.

Существуют следующие способы представления производных в конечно-разностном виде:

1) левое конечно-разностное отношение

; (168)

2) правое конечно-разностное отношение

; (169)

3) центрированное конечно-разностное отношение

. (170)

Для решения дифференциального уравнения в частных производных составляется явная разностная схема.

13.3.4. Явная разностная схема

Рассмотрим исходное уравнение (165) в n-й момент времени вk-ой точке пространства. Тогда правая часть уравнения (165) – первая частная производная по времени будет представлена так:

. (171)

Поскольку производная по времени, поэтому изменяется индекс n.

Вторая частная производная в сеточной области определяется как отношение разности 1-х производных по длине шага сетки.

. (172)

С помощью этих равенств производная с 1-м порядком точности относительно шагаDtи частная производнаясо 2-м порядком точности относительно шагаDxаппроксимируется в конечно-разностные отношения.

Производим замену в уравнении (165).

. (173)

. (174)

Из (174) видно, что по значению функции c(x, t)в точкахn-го временного слоя можно вычислить значение функцииc(x, t)в точкахn+1 временного слоя, т. е. мы имеем явную схему (рис. 104).

Рис. 104. Явная схема

Значение c(x, t)приt=0определяется из начальных условий:для(нижняя граница сетки).

Значение функции с(x, t)в крайних узлах прих=0 их=Lопределяется из краевых условий:

1. для(левая граница сетки).

2. Для расчета концентраций в сеточной области также необходимо знать CKn– концентрацию на границе (L) (концентрацию на парвом конце сетки), которая вычисляется из граничного условия:

,

откуда следует, что

.

Последовательно вычисляя С(xк,t1) для, затемC(xк,t2) дляи т. д. доC(xк,tN) получим профиль концентраций в произвольный момент времени в произвольной точке пространства.

Таким образом, уравнение (174) представляет собой систему уравнений, которая рассчитывается раз:

(175)