Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Фёдоров Н.Н. Теория механизмов и машин (2008).doc
Скачиваний:
53
Добавлен:
17.04.2019
Размер:
8.24 Mб
Скачать

Вопросы для самопроверки

1. Назовите виды трения, характерные для низших, высших кинематических пар.

2. Как объяснить наличие трения скольжения?

3. Каким закономерностям подчиняется трение скольжения?

4. Как вычисляется сила трения скольжения?

5. Что такое коэффициент трения? От чего зависит величина коэффициента трения?

6. Что такое угол трения, конус трения?

7. Какую роль играют угол и конус трения в поступательной паре?

8. При каком условии движущая сила не может осуществить движение ползуна по плоскости?

9. В каком случае наклонная плоскость является самотормозящейся?

10. Что такое КПД?

11. Что такое коэффициент потерь?

12. Что такое приведённый коэффициент трения клинчатого ползуна?

13. Как определяется мощность трения в поступательной паре?

14. Как определяется КПД винтовой пары?

15. Что такое круг трения во вращательной паре?

16. В чём значение круга трения во вращательной паре?

17. В чём существо трения качения?

18. Как определить момент трения качения?

19. Как определить мощность трения качения?

20. Как определяется КПД механизма?

6. Динамика машин

В динамике рассматривается движение машин (или механизмов) в связи с силами, действующими на их звенья. Основными задачами этого раздела являются:

1. Определение фактической угловой скорости ведущего звена механизма.

2. Определение момента инерции маховика, необходимого для поддержания изменения угловой скорости в заданных пределах.

3. Уравновешивание и балансировка вращающихся звеньев.

4. Уравновешивание механизмов.

5. Виброзащита и виброизоляция машин и устройств.

6.1. Вспомогательные задачи динамики машин

Д и н а м и ч е с к а я м о д е л ь м а ш и н ы . В связи с необходимостью упрощения расчётной схемы и большей наглядности, а также сокращения расчётов реальную машину заменяют её моделью, сохраняющей те свойства машины, которые изучаются на данном этапе исследования. Такая модель представляет собой некоторый условный диск, вращающийся с кривошипом как одно целое, то есть с его угловой скоростью (рис. 6.1), обладающий так называемым приведённым моментом инерции. На этой основе кривошип или другое ведущее звено, с которым связан условный диск, называется звеном приведения. На диск действуют приведённый момент движущих сил, направленный в сторону вращения, и приведённый момент сил сопротивления, направленный навстречу вращению.

На схеме рис. 6.1 обозначены: – приведённый момент инерции механизма, – приведённый момент движущих сил и – приведённый момент сил сопротивления.

П р и в е д ё н н ы й м о м е н т и н е р ц и и м е х а н и з м а. Приведённым моментом инерции механизма называется момент инерции условного диска, вращающегося с угловой скоростью ведущего звена, которым заменяется реальный механизм и который обладает кинетической энергией, равной сумме кинетических энергий всех звеньев механизма. Кинетическая энергия условного диска , где , то есть угловая скорость звена приведения, равная угловой скорости ведущего звена (чаще всего, но не обязательно, кривошипа).

Кинетическая энергия звена, совершающего поступательное движение, , где – масса звена; – скорость звена.

Кинетическая энергия звена, совершающего вращательное движение, , где – момент инерции звена; – угловая скорость звена.

Кинетическая энергия звена в плоскопараллельном движении , где – масса звена; – скорость центра масс звена, – момент инерции звена относительно его центра масс; – угловая скорость звена. Согласно определению имеем

.

Подставив сюда записанные выше выражения кинетических энергий и решая затем полученное равенство относительно , запишем

.

Как видно из этой формулы, приведённый момент инерции зависит от структуры механизма, от массовых характеристик звеньев, от положения механизма и не зависит от угловой скорости ведущего звена. Некоторые механизмы имеют постоянное значение приведённого момента инерции. Машины, в основе которых механизмы с , называются ротативными.

П р и в е д ё н н ы й м о м е н т с и л с о п р о т и в л е н и я. Приведённым моментом сил сопротивления называется момент, приложенный к звену приведения (например, кривошипу), мгновенная мощность которого равна сумме мгновенных мощностей всех сил сопротивления, действующих в механизме.

Мгновенная мощность приведённого момента сопротивления . Мгновенная мощность -й силы сопротивления . Согласно определению , поэтому, подставив сюда соответствующие выражения, получаем , откуда

.

Если среди сил сопротивления имеются моменты, то их можно представить в виде пар сил с плечами, равными длинам соответствующих звеньев.

Замечание. Если во всех математических выражениях заменить силы сопротивления движущими силами, то в результате получится приведённый момент движущих сил

.

Зависимость приведённых моментов сил от угла поворота ведущего звена, его скорости или времени называется механической характеристикой машины.