Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
УМП ТЭС.doc
Скачиваний:
444
Добавлен:
13.02.2015
Размер:
8.38 Mб
Скачать

22.5. Количество информации при оптимальном приёме непрерывных сигналов

В качестве критерия оптимальности при приеме непрерывных сигналов принимают минимум среднеквадратического отклонения между переданным u(t) и принятым uпр(t) сигналами [13]:

min ε2u(t) = min[uпр(t) - u(t)]2.

Этот критерий учитывает не только помехи, но и искажения принимаемых сигналов. Минимально возможное значение среднеквадратической ошибки min ε2u(t) при заданных условиях передачи определяет потенциальную помехоустойчивость приема непрерывных сигналов. Физически min ε2u(t) означает мощность помехи, поэтому расчет потенциальной помехоустойчивости сводится к вычислению минимально возможной мощности помехи на демодуляторе. Абсолютное значение мощности помехи не может быть объективной характеристикой ее влияния на сигнал, так как надо учитывать еще и уровень сигнала. Поэтому оценку помехоустойчивости приема непрерывных сигналов можно произвести количеством информации, получаемой при приеме этих сигналов.

Для рассматриваемой радиотехнической системы морской связи непрерывный сигнал может быть частотно-модулированным, его можно представить в виде ряда Котельникова. Для этого сигнала ранее найдено отношение сигнал/помеха: . В качестве помехи примем белый шум со спектральной плотностью N0 = 10-5В2/Гц; ширина полосы частот сигнала Δf = 3,0 кГц. Требуется определить количество информации при передаче сигнала по каналу связи.

Определим мощность помехи на входе приемного устройства:

Pп = N0Δf = 10-5 ∙ 3,0 ∙ 103 = 3,0 ∙ 10-2 Вт.

Среднеквадратическое отклонение помехи составит:

.

Найдем математическое ожидание напряжения сигнала:

.

Вероятность ошибки при появлении одного отсчета на входе приемника составит:

Pош = 0,5ехр(-0,5h2) = 0,5ехр(-0,5∙1,472) = 0,017.

Это же можно записать и в виде

Pош =Ф*((∞ - mп)/σп) - Ф*((l - mп)/σп) = 1 - Ф*(l/σп) = 0,017,

где l – порог обнаружения; mп = 0 – математическое ожидание помехи.

Следовательно,

Ф*(l / σп) = 1 - 0,17 ≈ 0,83.

По таблице нормального распределения [3] находим Ф*(l/σп) ≈ 0,83. Тогда

l/σп = 0,96; l = 0,96∙σп = 0,96∙0,173 = 0,166.

Вероятность отсутствия ошибки при приеме составит:

Pпр = 1 - Pош = 1 - 0,17 ≈ 0,83,

Pпр =Ф*((∞ - mс)/σс) - Ф*((l - mс)/σс) = 1 - Ф*((0,166 - 0,255)/σс).

После преобразования получим:

Ф*(-0,089/σс) = 1 - Pпр = 0,83.

По таблице нормального распределения находим:

Ф*(-0,089/σс) = Ф*(-0,96)0,83,

-0,089с = -0,096, σс = 0,093.

Количество информации на один отсчет определяется по формуле

.

22.6. Выигрыш в отношении сигнал/помеха

Другим способом определения помехоустойчивости приема непрерывных сигналов является вычисление отношения средних мощностей сигнала Pc и помехи Рп на выходе демодулятора

hвых = Pc / Рп.

В любом демодуляторе отношение сигнал/помеха на выходе hвых зависит не только от качественных показателей демодулятора, но и от отношения сигнал/помеха на его входе hвх. Помехоустойчивость систем передачи непрерывных сигналов оценивают выигрышем в отношении сигнал/помеха:

g = hвых / hвх = (Pc вых / Рп вых) / (Pc вх / Рп вх),

причем средние мощности помех на входе и выходе демодулятора определяются в полосе частот сигналов.

Выигрыш g показывает изменение отношения сигнал/помеха демодулятором. При g > 1 демодулятор улучшает отношение сигнал-помеха, при g < 1 получается не «выигрыш», а «проигрыш».

Расчетные формулы выигрыша для оптимального демодулятора при различных видах модуляции и помехе в виде аддитивного белого гауссовского шума приведены в таблице 22.3 где обозначены: KA2 =10 lg Pmax/P; α = Δfc/Fmкоэффициент расширения полосы, показывающий, во сколько раз ширина спектра модулированного сигнала Δfc превышает максимальную частоту модулирующего сигнала Fm; M коэффициент модуляции; т - индекс модуляции; КA коэффициент амплитуды модулирующего сигнала, представляющий собой отношение его максимальной мощности к средней и определяемый в логарифмических единицах по формуле (табл. 22.3).

Таблица 22.3