Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Нвчально-методичний посібник.doc
Скачиваний:
434
Добавлен:
11.02.2016
Размер:
4.76 Mб
Скачать

Запитання для самоконтролю

  1. Що називають повною групою подій?

  2. Записати формулу повної ймовірності.

  3. Які події називаються залежними? Навести приклад.

  4. Дати означення умовної ймовірності. Навести приклад.

  5. Записати формулу Бейєса. Які умови її використання?

Тема 5. Послідовні незалежні випробування

5.1.Схема повторних незалежних випробувань Бернуллі.

Формула Бернуллі.

Часто при дослідженні деякої випадкової події А організовують експеримент за такою схемою:

  1. проводять п послідовних незалежних випробувань, в кожному з яких може відбутися подія А;

  2. ймовірність події А в кожному випробуванні є величина стала Р(А)=р, тоді Р()=q, відомо, що Р(А)+ Р()=1 p+q=1;

  3. ставиться питання, яка ймовірність того, що при цих п незалежних випробуваннях, подія А настане к разів (0≤кп). Аналітично це виглядає так: ? або–?

Експеримент організований за такою схемою називають схемою повторних незалежних випробувань Бернуллі.

Ймовірність того, що подія А настанек разів в п випробуваннях знаходиться за формулою Бернуллі:

, де (7)

Число k0, при якому ймовірність найбільша, називаєтьсянайімовірнішим числом настання події А. Знайти його можна за формулою – ціла частина числа. Якщо виявиться, що число– ціле, ток0-1 також буде найімовірнішим числом настання події А.

Задача.18. Що більш ймовірно: виграти у гравця у шахи (рівного собі за силою гри) чотири партії з восьми, чи три партії з п’яти?

Розв’язання. За умовою ,.

Скориставшись формулою (7), одержимо:

,

.

Відповідь: Оскільки , то більш ймовірно виграти три партії з п’яти, чим чотири з восьми.

5.2. Граничні теореми у схемі Бернуллі

Знаходження ймовірності за схемою Бернуллі ускладнюється, якщо п дуже велике і р або q дуже малі числа.

Для такого випадку застосовують наближені формули:

а) формула Пуассона

Справедлива наближена рівність

, де ,(8)

Ця формула дає досить точне наближення при тар близьких до нуля (р0,1), тобто для подій, які рідко трапляються.

Задача.19. Середній брак при виробництві продукції становить 0,1%. Перевіряється партія з 1000 деталей. Яка ймовірність того, що бракованих буде 4 деталей?

Розв’язання. За умовою задачі n=1000, p=0,001→0, λ=np=1000*0,001=1. При таких умовах застосовуємо формулу Пуассона: . Отже, маємо.

Відповідь: 0,0153.

б) локальна теорема Муавра-Лапласа

Справедлива наближена рівність

, (9)

де ,– локальна функція Муавра-Лапласа.

Функція парна. Таблиця значень функції наведена у додатку 2. Формула (9) дає добре наближення, якщоп достатньо велике, а 0р1.

Задача 20. При виробництві деякої продукції ймовірність виготовлення 1-го сорту приймається рівною 0,60. Визначити ймовірність того, що із 100 навмання взятих виробів 65 будуть першого сорту.

Розв’язання Нехай подія А – виготовлення виробу першого сорту. За умовою n=100, k=65, p=0,60, q=0,40. Оскільки n достатньо велике число, p не прямує ні до 0, ні до 1, то скористаємося локальною теоремою Муавра-Лапласа: .

.

За таблицею значень локальної функції Лапласа (додаток 2) знаходимо, що . Тому шукана ймовірність

.

Відповідь: 0,045.

в) інтегральна теорема Муавра-Лапласа

Ймовірність того, що при п незалежних випробуваннях, в кожному з яких подія А може відбутися з ймовірністю р (0р1), подія А відбудеться не менше к1 і не більше к2 разів, наближено дорівнює

(10)

де – інтегральна функція Муавра-Лапласа.

Функція непарна. Таблиця значень інтегральної функції наведена у додатку 3. Для всіх значень х≥5 можна вважати.

Задача 21. Ймовірність виходу з ладу одного приладу дорівнює 0,1. Визначити ймовірність того, що за час Т зі 100 приладів вийде з ладу від 6 до 18 приладів.

Розв’язання За умовою задачі n=100, k1=6, k2=18, p=0,1, q=1‑p=1‑0,1=0,9. Скористаємося інтегральною теоремою Муавра-Лапласа: .

.

За таблицею значень інтегральної функції Лапласа (додаток 3) знаходимо:

Ф(2,66)=0,4961, Ф(-1,33)=-Ф(1,33)=-0,4082.

Тому .

Відповідь: 0,9043.