Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Ответы на билеты по биологии.docx
Скачиваний:
2530
Добавлен:
21.03.2016
Размер:
2.28 Mб
Скачать

1).А)Реализация генетической информации. Б)Взаимосвязь между геном и признаком. В)Центральная догма молекулярной биологии. Смысловое значение ее постулатов.

А)Процесс реализации наследственной информации (биосинтез белка) включает следующие этапы:

Транскрипция

Процесс переписывания информации о первичной структуре белка с молекулы ДНК на про-и-РНК называется транскрипцией. Синтез про-и-РНК начинается с обнаружения РНК-полимеразой особого участка в молекуле ДНК, который называется промотором - он указывает место начала транскрипции. РНК-полимераза обеспечивает раскручивание уча­стка ДНК, соответствующего транскрибируемому гену, разрушение водородных связей между тяжами ДНК, рождение тяжей, осуществление синтеза про-и-РНК. Сборка рибонуклеотидов в цепь происходит с соблю­дением их комплементарности нуклеотидам ДНК. РНК - полимераза спо­собна собирать полинуклеотид от 5' конца к 3' - концу, матрицей для транскрипции может служить только одна из цепей ДНК, та, которая об­ращена к ферменту своим 3' - концом (3' → 5'). Такую цепь называют кодогенной. Антипараллельное соединение двух полинуклеотидных цепей в молекуле ДНК позволяет РНК полимеразе правильно выбрать матрицу для синтеза про-и-РНК. Транскрипция осуществляется до тех пор, пока РНК-полимераза не встретит специфическую последовательность нуклео­тидов - терминатор транскрипции. В этом участке РНК - полимераза отде­ляется как от ДНК, так и от вновь синтезированной молекулы про-и-РНК. Затем про- и-РНК - специальными ферментами отделяется с ДНК. Образуемая в ходе транскрипции молекула про-и-РНК является точной копией гена и отражает его интрон-экзонную структуру. Тройки рядом стоящих нуклеотидов, шифрующие аминокислоты называют кодонами. На специальных генах синтезируются и два других вида РНК: т-РНК и р-РНК. Начало и конец синтеза всех типов PНK на матрице ДНК строго фиксиро­ван специальными триплетами, которые инициируют запуск и остановку (терминацию) синтеза. Процессинг - это созревание и-РНК. Происходит удаление из первичных транскриптов неинформативных для данного блока интронных участков, размер которых варьирует от 100 до 1000 нуклеоти­дов. На долю интронов приходиться около 80 % всей про-и-РНК. Удале­ние интронов с последующим соединением экзонных участков называют сплайсингом. Закономерность вырезания интронов обеспечивается благодаря налипанию на их концы специфических нуклеотидных последова­тельностей, опознаваемых определенными ферментами. После сшивания смысловой части и-РНК осуществляется ориентация ее концов: на 5' – конце происходит метилирование азотистых оснований, образуется колпачок – КЭП, обеспечивающий узнавание молекул и-РНК малыми субчастицами рибосом. На 3' - конце первичного транскрипта присоединяется последовательность, состоящая из 100 - 200 остатков адениловой кислоты (поли А). Поли А определяет кратность трансляции. К тому же эта последова­тельность способствует выходу зрелой м-РНК из ядра.

Благодаря преобразованиям, происходящим с про-и-PНK в ходе процессинга, зрелая и-РНК эукариот характеризуется большой стабильностью. После завершения процессинга зрелая иРНК проходит отбор перед выходом в цитоплазму, куда попадает всего 5% иРНК. Остальная часть расщепляется не выходя из ядра.

Трансляция - это процесс считывания наследственной информа­ция с последовательности нуклеотидов иРНК на последовательность ами­нокислот в полипептидной цепи. Процесс обеспечивается взаимодействи­ем тРНК и иРНК. Осуществляется на рибосомах. В рибосомах имеется две бороздки: одна удерживает растущую полипептидную цепь, другая – и-РНК. Кроме того в рибосомах имеются два участка, связывающих тРНК. В аминоацильном участке (А - участке) размещается аминоацил тРНК, не­сущая определенную аминокислоту. В пептидильном участке (П - участок) располагается обычно тРНК, которая нагружена цепочкой аминокислот, соединенных пептидными связями. Образование А и П участков обеспечи­вается обеими субчастицами рибосомы. При реализации генетической информации каждая тРНК распознает, присоединяет и переносит в рибосому свою аминокислоту. Этот процесс называется рекогниция. Специфическое соединение тРНК со своей аминокислотой протекает в два этапа и приво­дит к образованию соединения, называемого аминоацил - тРНК. Процесс этот происходит при участии специфического фермента (аминоацил - тРНК синтетазы).

В ходе трансляции можно выделить 3 фазы: инициацию, элонгацию и терминацию.

Фаза инициации, или начало синтеза пептида. Заключается в объединении большой и малой субчастиц рибосомы на определенном участке и-РНК и присоединении к ней первой аминоацил тРНК. В молекуле любой и-РНК вблизи ее 5' - конца имеется участок, комплементарный р-РНК малой субчастицы рибосомы и специфически узнаваемый ею. Рядом с ним располагается стартовый кодон (инициирующий) АУГ, шифрующий аминокислоту метионин. Малая субъединица рибосомы соединяется с иРНК таким образом, что стартовый кодон АУГ располагается в области, соответствующей П - участку. При этом только инициирующая тPHK, не­сущая метионин способна занять место в недостроенном П - участке малой субчастицы рибосомы и комплементарно соединиться со стартовым кодоном. После этого происходит объединение большой и малой субчастиц рибосомы с образованием ее пептидильного и аминоациального участков.

К концу фазы инициации П участок занят аминоацил-тРНК, свя­занной с метионином, а в А-участке рибосомы располагается следующий за стартовым кодон.

Процессы инициации, трансляции катализируются особыми белка­ми - факторами инициации, которые подвижно связаны с малой субчасти­цей рибосомы.

Фаза элонгации, или удлинения пептида. Включает в себя реак­ции от момента образования первой пептидной связи до присоединения последней аминокислоты. Представляет собой циклически повторяющиеся события, при которых происходит специфическое узнавание аминоацил-тРНК очередного кодона, находящегося в А - участке, комплементарное взаимодействие между кодоном и антикодоном. Благодаря особенностям строения тРНК при соединении ее антикодона с кодоном и-РНК, транс­портируемая ею аминокислота, располагается в А - участке поблизости от ранее включенной аминокислоты, находящейся в П – участке. Здесь между аминокислотами образуется пептидная связь, катализируемая особыми белками, входящими в состав рибосомы В результате предыдущая аминокислота теряет связь со своей т-РНК и присоединяется к аминоацил-т-РНК, расположенной в А - участке. Находившаяся в этот момент в П – участке тРНК высвобождается и уходит в цитоплазму.

Перемещение т-РНК, нагруженной пептидной цепочкой из А - уча­стка в П участок сопровождаемся продвижением рибосомы по и-РНК на шаг, соответствующий одному кодону. Затем следующий кодон входит в контакт с А - участком, где он будет специфически «опознан» соответст­вующей аминоацил-тРНК, которая разместит здесь свою аминокислоту. Такая последовательность событий повторяется до тех пор, пока в А - уча­сток рибосомы не поступит кодон - терминатор, для которого не сущест­вует соответствующей т-РНК. Скорость элонгации зависит от различных факторов, в том числе и от t°.

Фаза терминации, или завершения синтеза полипептида.

Она обусловлена узнаванием специфическим рибосомным белком одного из терминирующих кодонов, когда тот входит в зону А - участка рибосомы. При этом к последней аминокислоте в пептидной цепи присоединяется вода и ее карбоксильный конец отделяется от т-РНК В результа­те завершения полипептидная цепь теряет связь с рибосомой, которая рас­падается на две субчастицы.

Эпигенез. Под действием ферментов и энергии полипептидная цепь, имеющая только в определенной последовательности соединенные аминокислоты, спирально сворачивается в результате образования водородных мостиков между нитями спирали, принимая вторичную структуру. Затем молекула сворачивается в клубок, между его нитями образуются сульфидные связи (S - S). Это третичная структура. Объединение различных глобул, возникновение комплексных связей между ними определя­ет четвертичную структуру белка (гемоглобин). Эпигенез происходит вне рибосом на мембранах ЭПС и комплекса Гольджи. Формируя третичную и четвертичную структуру в ходе посттрансляционных преобразований, белки приобретают способность активно функционировать, включаться в определенные клеточные структуры, осуществлять ферментативные и другие функции

Б) Открытия экзон-интронной организации эукариотических генов и возможности альтернативного сплайсинга показали, что одна и та же нуклеотидная последовательность первичного транскрипта может обеспечить синтез нескольких полипептидных цепей с разными функциями или их модифицированных аналогов. Например, в митохондриях дрожжей имеется ген box (или cob), кодирующий дыхательный фермент цитохром b. Он может существовать в двух формах. «Длинный» ген, состоящий из 6400 п. н., имеет 6 экзонов общей протяженностью 1155 п.н. и 5 интронов. Короткая форма гена состоит из 3300 п.н. и имеет 2 интрона. Она фактически представляет собой лишенный первых трех интронов «длинный» ген. Обе формы гена одинаково хорошо экспрессируются. После удаления первого интрона «длинного» гена box на основе объединенной нуклеотидной последовательности двух первых экзонов и части нуклеотидов второго интрона образуется матрица для самостоятельного белка — РНК-матуразы. Функцией РНК-матуразы является обеспечение следующего этапа сплайсинга — удаление второго интрона из первичного транскрипта и в конечном счете образование матрицы для цитохрома b.

У вирусов и бактерий описана ситуация, когда один ген может одновременно являться частью другого гена или некоторая нуклеотидная последовательность ДНК может быть составной частью двух разных перекрывающихся генов. Например, на физической карте генома фага ФХ174 видно, что последовательность гена В располагается внутри гена А, а ген Е является частью последовательности гена D. Этой особенностью организации генома фага удалось объяснить существующее несоответствие между относительно небольшим его размером (он состоит из 5386 нуклеотидов) и числом аминокислотных остатков во всех синтезируемых белках, которое превышает теоретически допустимое при данной емкости генома. Возможность сборки разных пептидных цепей на мРНК, синтезированной с перекрывающихся генов (А и В или Е и D), обеспечивается наличием внутри этой мРНК участков связывания с рибосомами. Это позволяет начать трансляцию другого пептида с новой точки отсчета.

Нуклеотидная последовательность гена В является одновременно частью гена А, а ген Е составляет часть гена D. В геноме фага λ были также обнаружены перекрывающиеся гены, транслируемые как со сдвигом рамки, так и в той же рамке считывания. Предполагается также возможность транскрибирования двух разных мРНК с обеих комплементарных цепей одного участка ДНК. Это требует наличия промоторных областей, определяющих движение РНК-полимеразы в разных направлениях вдоль молекулы ДНК.

Описанные ситуации, свидетельствующие о допустимости считывания разной информации с одной и той же последовательности ДНК, позволяют предположить, что перекрывающиеся гены представляют собой довольно распространенный элемент организации генома вирусов и, возможно, прокариот. У эукариот прерывистость генов также обеспечивает возможность синтеза разнообразных пептидов на основе одной и той же последовательности ДНК.

Имея в виду все сказанное, необходимо внести поправку в определение гена. Очевидно, нельзя больше говорить о гене как о непрерывной последовательности ДНК, однозначно кодирующей определенный белок. По-видимому, в настоящее время наиболее приемлемой все же следует считать формулу «Один ген — один поли-пептид», хотя некоторые авторы предлагают ее переиначить: «Один полипептид — один ген». Во всяком случае, под термином ген надо понимать функциональную единицу наследственного материала, по химической природе являющуюся полинуклеотидом и определяющую возможность синтеза полипептидной цепи, тРНК или рРНК.Один ген один энзим.

В) Центральная догма молекулярной биологии

Основные положения теории генетической информации.

  1. Носителем наследственной информации являются нуклеиновые кислоты (главным образом ДНК, исключение - РНК содержащие вирусы).

  2. Единицей наследственности является ген, который с точки зрения молекулярной биологии определяется как участок ДНК, характери­зующийся определенной последовательностью нуклеотидов.

  3. Способность ДНК, как химической основы гена, к редупликации обеспечивает передачу наследственной информации из поколения в поко­ление.

  4. Генетическая информация о первичной структуре белка кодиру­ется с помощью определенной последовательности нуклеотидов в цепи ДНК.

  5. Биосинтез белка является процессом реализации наследственной информации. Образовавшиеся белки ферменты вступают в цепь биохими­ческих реакций, конечным результатом которых является формирование фенотипического выражения признаков.