Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
все.блядствоdocx.docx
Скачиваний:
181
Добавлен:
28.03.2016
Размер:
5.15 Mб
Скачать

15. Числовые ряды и их сходимость.

Числовым рядом наз-ся сумма u1+u2+..+un+..(1) или ,un наз. общим членом ряда.

S1=u1; S2=u1+u2=S1+u2; Sn=u1+.+un=Sn-1+un. S1,.,Sn (2) – частичные суммы ряда.

Если пределSn при n→∞ , то он наз-сясуммой ряда (1), а сам ряд наз-ся сходящимся. Если не сущ-т или равен ∞, то ряд наз-сярасходящимся.

] дан ряд u1+..+un+ (3). Ряд un+1+..+un+p+.. или наз.остатком ряда (4). Ряды (3)(4) сх-ся и расх-ся одновременно. Если (3) сх-ся, то его n-остаток0 при n.

Необх. признак сх-ти ряда: если ряд сх-ся, то его общ. чл. un0. Обратное не верно.

Д-во. ;;;ч.т.д..

След. Если , то ряд расх-ся. Предположим, что ряд сходится. Но тогда, что невозможно.

] имеем ряд, сост. из членов геом. прогрессии: .1) |q| < 1: -ряд сх-ся. 2) |q| > 1: -ряд расх-ся; 3) q=1: -ряд расх-ся; 4) q=-1: S1=a, S2=0, S3=a, S4=0,… В этом сл. послед-ть Sn не имеет предела, т.е. ряд расходится.

Если числ. ряд сх-ся, то сх-ся и его остаток. Обратно: если сход-ся остаток ряда, то сход-ся и сам ряд. ;.-если сущ-т предел в прав. части, то он сущ-т и в левой. И наоборот.

Послед-ть наз фундаментальной, если для >0 N n,mN (xn,xm)<. Фундаментальность обозначает, что с ростом N члены посл-ти неогранич сближ др с др.

Критерий Коши сх-ти числ. посл-ти. для того, чтобы посл-ть имела конеч. предел, н. и. д., чтобы она была фундаментальной.

Критерий Коши сх-ти числ.ряда: пусть дан ряд u1++un (1), s1,,sn (2). Для того, чтобы ряд сх, н и д, чтобы посл-ть его частич сумм была фундам.

Док-во: Необходимость: пусть (1) сх-ся, сл-но (2) имеет конеч. предел, сл-но, посл-ть фундаментальна.

Достаточность. (2) – фундам. сход.сущ. конеч. предел.(1) – сх-ся.

; .

Ряды с неотр членами. Ряд наз-ся положит., если все его члены не отриц. un>=0. Критерий сх-ти полож ряда. Чтобы полож ряд сх, н и д, чтобы послед-ть его частичных сумм была ограничена сверху.

Признаки сравнения. Th1. Пусть даны ряды . Если вып-сяи (2) сх-ся, то сх-ся и (1). (Если ряд с большими членами сх-ся, то ряд с меньшими тем более сх-ся. Если ряд с меньшими членами расх-ся, то ряд с большими тем более расх-ся.)

Th2. Пусть даны . Еслигдеq≠0, q≠∞ (3), то (1) и (2) либо одновр-но сх-ся, либо одновр-но расх-ся.

Признак Коши. Если , то приq<1 ряд сх-ся, при q>1 ряд расх-ся, если q=1, признак не работает.

Признак Даламбера: Для положит. ряда (1) справедливы утверждения: 1) если для некот.вып. усл.(2), то (1) сх-ся, если(3), то (1) расх-ся; 2), то приq<1 ряд сх-ся, при q>1 ряд расх-ся, если q=1, признак не работает. Док-во: 1) (2) верно ,;(**),

(*), - геом. прогрессия. (*) сх-ся при(**) – сх-ся ост. (1)(1) сх-ся. (3) верно.,,по необ. пр. (1) расх-ся.

2) ,. а)по 1ч. (1) сх-ся. б)по 1ч. (1) расх-ся.

Интегральный признак. Пусть дан ряд Если сущ-т неотриц. невозраст. ф-яf(x): f(n)=an, то ряд (1) сходится, если сх-ся и расх-ся, если расх-ся интеграл.

Признак Лейбница. ] дан ряд . Если члены ряда (1) не возр. по абс. величине, т.е. u1≥u2≥u3≥…, то (1) сх-ся.Док-во. S2n=(u1-u2)+(u3-u4)+…+(u2n-1-u2n) ≥ 0, S2n монотонно возр. S2n-1= u1-(u2-u3)-(u4-u5)-…-(u2n-2-u2n-1)-u2n ≤ u1. Т.к. (S2n) монотонно возр. и огр. сверху, то она имеет предел. .ряд сх-ся. ЧТД.

Ариф операции над сх. рядами. Пусть даны два ряда (n=1,)Un, (n=1,)Vn. Сумма рядов Un и Vn наз ряд (n=1,)(Un+Vn). Произведение ряда на число (n=1,)Un=(n=1,)Un.

Даны два ряда: (1),(2). Ряд (1) наз.абсолютно сх-ся, если сх-ся ряд (2). Ряд (1) наз. усл. сх-ся, если он сам сх-ся, а (2) расх-ся.

Теорема Римана: если ряд сх-ся условно и А – любое число, то перестановкой м. получить новый ряд, для кот. А б. его суммой.