Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
PAT_UCH.doc
Скачиваний:
359
Добавлен:
09.02.2016
Размер:
2.4 Mб
Скачать

3.2 Факторы, повреждающие клетку

Многоклеточные организмы представляют собой ансамбли клеток, объединенных межклеточными, гуморальными и нервными механизмами регуляции. Жизненный цикл клетки слагается из ряда последовательных процессов, причём он имеет разную продолжительность, определяемую спецификой клетки. Продолжительность жизни клеток широко варьирует от нескольких десятков часов (клетки эпителия слизистой желудка и тонкой кишки) до десятков лет (нервные клетки).

В естественных условиях жизни на клетки организма постоянно воздействуют различные факторы, которые могут вызвать повреждение. Повреждающие факторы делят на физические, химические и биологические (рис. 3.3, 3.4).

Физические повреждающие факторы

Среди физических причин наиболее часто вызывают повреждение клеток и тканей механические воздействия (ранения), температурные влияния (ожоги) и облучение.

При ранениях происходит дезорганизация тканей, клеток и субклеточных структур. Степень травмы зависит от силы повреждающего воздействия, его длительности, а также площади повреждения.

Вокруг зоны ранения, состоящей из погибших клеток (зона некроза), немедленно образуется вторая зона, характеризующаяся высокой ферментативной активностью. Ферменты этой зоны, преимущественно гидролазы лизосом нейтрофильных лейкоцитов (микрофагов) и моноцитов (макрофагов) расщепляют макромолекулы погибших клеток. Этим расчищается место для вновь образующихся клеток, а мономеры, появляющиеся при расщеплении макромолекул, служат строительным материалом для этих клеток. У неповрежденных клеток этой ткани (эпителиальной), находящихся на границе травмы, резко возрастает митотическая активность. Это происходит под влиянием биологически активного полипептида - эпидермального фактора роста (ЭФР), который образуется в очаге повреждения. Процесс заживления начинается уже в самый момент нанесения травмы без всякого переходного периода. При обширных ранениях, особенно сопровождающихся размозжением тканей, в зоне некроза накапливается большое количество продуктов лизиса (гидролиза) тканей, а также недоокисленных продуктов обмена. Эти вещества служат благоприятной средой для развития микроорганизмов, а также раздражают нервные окончания, вызывая интенсивный поток болевых импульсов в центральную нервную систему. Интоксикация продуктами деструкции собственных тканей и чрезмерная болевая импульсация могут привести к развитию шока. Шок характеризуется резким снижением всех функций организма, обусловленным угнетением (вслед за первоначальным возбуждением) нервной системы, расстройством кровообращения, обмена веществ и дыхания. Различают первичный (после ранения) травматический шок и вторичный, который развивается спустя несколько часов после травмы. Вторичный травматический шок обусловлен, главным образом, аутоинтоксикацией продуктами разрушения тканей. Лечебные мероприятия при травме состоят из хирургической обработки раны, иммобилизации (создании покоя) повреждённой части тела, введения антибактериальных и анальгетических (обезболивающих) препаратов.

Термические воздействия (ожоги) вызывают прежде всего структурные изменения в белковых молекулах клеток. Эти изменения в зависимости от величины и длительности температурного воздействия, колеблются от обратимой денатурации (потери молекулой белка четвертичной, третичной и вторичной структуры) до необратимой минерализации (обугливания). Степень ожога зависит от температуры источника, экспозиции (длительности воздействия) и площади повреждения. Температурному воздействию в первую очередь подвергаются эпителиальные клетки, лежащие под роговым слоем кожи. Высоко чувствительны к температурному воздействию клетки эндотелия микрососудов. При температурном воздействии легко травмируются капилляры, существенно повышается проницаемость капилляров для плазмы крови, которая скапливается в межклеточном пространстве, обусловливая развитие отёка. Отёчная жидкость, сочащаяся по ожоговой поверхности, является прекрасной питательной средой для микроорганизмов. Так создаётся предпосылка для внедрения инфекции и распространения инфекционного процесса по всему организму (сепсису), что является грозным осложнением ожогов. При ожогах резко возрастает теплопродукция. Эта мера направлена на компенсацию потерь тепла, которые значительно повышаются при нарушении теплоизолирующего слоя и усилении испарения воды с ожоговой поверхности. Интенсификация теплопродукции осуществляется под влиянием гормона адреналина, который при обширных травмах вследствие боли и страха выделяется в больших количествах в кровь. В первые часы после ожога усиление теплопродукции обеспечивается за счёт активации окисления глюкозы, мобилизующейся из запасов гликогена в печени. В дальнейшем энергообразование покрывается за счёт расщепления жира в жировых клетках (адипозоцитах). Интенсивное окисление жиров и жирных кислот обусловливает накопление недоокисленных продуктов обмена и развитие метаболического (обменного) ацидоза (сдвига рН в кислую сторону). Все рассмотренные явления - боль, страх, потеря жидкости (сгущение крови), ацидоз, аутоинтоксикация продуктами распада собственных тканей являются компонентами патогенеза ожогового шока. Общие меры при лечении ожогов направлены на уменьшение и восполнение потерь белка, солей и воды, а также на нормализацию рН крови. Важно устранить боль и свести к минимуму неадекватно сильное и поэтому пагубное влияние адреналина. С целью профилактики инфицирования необходимо обрабатывать ожоговую поверхность (подсушивание в стерильных условиях, наложение стерильных повязок, пропитанных растворами антибиотиков и местных анестетиков).

Накопленные запасы и испытания ядерного оружия, широкое использование энергии атома в мирных целях увеличили значимость в современной медицине радиационного поражения организма.

При действии проникающей радиации повреждается ДНК. Она деспирализуется, её азотистые основания могут заменяться на другие или выпадать (точечные мутации). Тормозится синтез ДНК, деление клеток, нарушается их рост и дифференциация. При необратимых изменениях молекула ДНК гибнет. Действие ионизирующей радиации не ограничивается повреждением ДНК. Энергия излучения поглощается всеми структурами клетки, при этом из воды образуются свободные радикалы, которые вызывают перекисное окисление липидов мембран клеток и разрушают их. В таблице 3.1. показаны этапы свободнорадикального перекисного окисления липидов и пути антиоксидантной защиты клеток.

Таблица. 3.1

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]